The Journal of Membrane Biology

, Volume 30, Issue 1, pp 99–120 | Cite as

Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria

  • Stanley J. Schein
  • Marco Colombini
  • Alan Finkelstein
Article

Summary

We have incorporated into planar lipid bilayer membranes a voltage-dependent, anion-selective channel (VDAC) obtained fromParamecium aurelia. VDAC-containing membranes have the following properties: (1) The steady-state conductance of a many-channel membrane is maximal when the transmembrane potential is zero and decreases as a steep function of both positive and negative voltage. (2) The fraction of time that an individual channel stays open is strongly voltage dependent in a manner that parallels the voltage dependence of a many-channel membrane. (3) The conductance of the open channel is about 500 pmho in 0.1 to 1.0m salt solutions and is ohmic. (4) The channel is about 7 times more permeable to Cl than to K+ and is impermeable to Ca++. The procedure for obtaining VDAC and the properties of the channel are highly reproducible.

VDAC activity was found, upon fractionation of the paramecium membranes, to come from the mitochondria. We note that the published data on mitochondrial Cl permeability suggest that there may indeed be a voltage-dependent Cl permeability in mitochondria.

The method of incorporating VDAC into planar lipid bilayers may be generally useful for reconstituting biological transport systems in these membranes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brierley, G.P. 1970. Energy-linked alteration of the permeability of heart mitochondria to chloride and other anions.Biochemistry 9:697Google Scholar
  2. Brierley, G.P., Stoner, C.D. 1970. Swelling and contraction of heart mitochondria suspended in ammonium chloride.Biochemistry 9:708Google Scholar
  3. Dryl, S. 1959. Antigenic transformation inParamecium aurelia after homologous antiserum treatment during autogamy and conjugation.J. Protozool. 6:S96Google Scholar
  4. Ehrenstein, G., Lecar, H., Nossal, R. 1970. The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material.J. Gen. Physiol. 55:119Google Scholar
  5. Goldin, S., Tong, S.W. 1974. Reconstitution of active transport catalyzed by the purified sodium and potassium ion-stimulated adenosine triphosphatase from canine and renal medulla.J. Biol. Chem. 249:5907Google Scholar
  6. Hilden, S., Rhee, H.M., Hokin, L.E. 1974. Sodium transport by phospholipid vesicles containing purified sodium and potassium ion-activated adenosine triphosphatase.J. Biol. Chem. 249:7432Google Scholar
  7. Hinkle, P.C., Kim, J.J., Racker, E. 1972. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids.J. Biol. Chem. 247:1338Google Scholar
  8. Hufnagel, L.A. 1967. Physical and Chemical Studies of Isolated Pellicles ofParamecium aurelia. Ph. D. Thesis, University of Pennsylvania, Philadelphia, PennsylvaniaGoogle Scholar
  9. Kagawa, Y., Racker, E. 1971. Partial resolution of the enzymes catalyzing oxidative phosphorylation.J. Biol. Chem. 246:5477Google Scholar
  10. Knowles, A.F., Racker, E. 1975. Properties of a reconstituted calcium pump.J. Biol. Chem. 250:3538Google Scholar
  11. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the folin phenol reagent.J. Biol. Chem. 193:265Google Scholar
  12. Montal, M. 1974a. Formation of bimolecular membranes from lipid monolayers.In: Methods in Enzymology. Vol. 32 Part B, p. 545. S. Fleischer and L. Packer, editors. Academic Press, New YorkGoogle Scholar
  13. Montal, M. 1974b. Lipid-protein assembly and the reconstitution of biological membranes.In: Perspectives in Membrane Biology. p. 591. S. Estrada-O and C. Gitler, editors. Academic Press, New YorkGoogle Scholar
  14. Mueller, P., Rudin, D.O. 1968. Resting and action potentials in experimental bimolecular lipid membranes.J. Theoret. Biol. 18:222Google Scholar
  15. Mueller, P., Rudin, D.O., Tien, H.Ti, Wescott, W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution.J. Phys. Chem. 67:534Google Scholar
  16. Nicholls, D.G. 1974. Hamster brown-adipose-tissue mitochondria. The chloride permeability of the inner membrane under respiring conditions, the influence of purine nucleotides.Eur. J. Biochem. 49:585Google Scholar
  17. Racker, E., Stoeckenius, W. 1974. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation.J. Biol. Chem. 249:662Google Scholar
  18. Semenza, G. 1974. The transport systems for sugars in the small intestine. Reconstitution of one of them.In: Drugs and Transport Processes. B.A. Callingham, editor. p. 317. Macmillan Press, LondonGoogle Scholar
  19. Soldo, A.T., Godoy, G.A., van Wagtendonk, W.J. 1966. Growth of particle-bearing and particle-freeParamecium aurelia in axenic culture.J. Protozool. 13:492Google Scholar
  20. Soldo, A.T., van Wagtendonk, W.J. 1969. The nutrition ofParamecium aurelia, Stock 299.J. Protozool. 16:500Google Scholar
  21. Watson, M.R., Hopkins, J.M. 1962. Isolated cilia fromTetrahymena pyriformis.Exp. Cell Res. 28:280Google Scholar
  22. Weiner, M.W. 1975. Mitochondrial permeability to chloride ion.Am. J. Physiol. 228:122Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1976

Authors and Affiliations

  • Stanley J. Schein
    • 1
  • Marco Colombini
    • 1
  • Alan Finkelstein
    • 1
  1. 1.Department of PhysiologyAlbert Einstein College of MedicineBronx

Personalised recommendations