Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Measurement of membrane potentials (ψ) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation

Summary

The accumulation of the lipophilic cation, triphenylmethylphosphonium, has been employed to determine the resting membrane potential in human erythrocytes, turkey erythrocytes, and rat white adipocytes. The triphenylmethylphosphonium cation equilibrates rapidly in human erythrocytes in the presence of low concentrations of the hydrophobic anion, tetraphenylborate. Tetraphenylborate does not accelerate the uptake of triphenylmethylphosphonium ion by adipocytes. The cell associatedvs. extracellular distribution of the triphenylmethylphosphonium ion is proportional to changes in membrane potential. The distribution of this ion reflects the membrane potential determining concentration of the ion with dominant permeability in a “Nernst” fashion. The resting membrane potentials for the human erythrocyte, turkey erythrocyte, and rat white adipocyte were found to be −8.4±1.3, −16.8±1.1, and −58.3±5.0 mV, respectively, values which compare favorably with values obtained by other methods. In addition, changes in membrane potential can be assessed by following triphenylmethylphosphonium uptake without determining the intracellular water space. The method has been successfully applied to a study of hormonally induced changes in membrane potential of rat white adipocytes.

This is a preview of subscription content, log in to check access.

References

  1. Altendorf, K., Hirata, H., Harold, F.M. 1975. Accumulation of lipid soluble ions and of rubidium as indicators of the electrical potential of membrane vesicles ofEscherichia coli.J. Biol. Chem. 250:1405

  2. Azzone, G.F., Bragadin, T.N., Pozzan, T., Dell'Antone, P. 1976. Proton electrochemical potential in steady state rat liver mitochondria.Biochim. Biophys. Acta 459:96

  3. Azzone, G.F., Pozzan, T., Massari, S., Bragadin, M. 1978. Proton electrochemical gradients and rate of controlled respiration in mitochondria.Biochim. Biophys. Acta 501:296

  4. Bakeeva, L.E., Grinius, L.L., Jasaitis, A.A., Kuliene, V.V., Levitsky, D.D., Liberman, E.A., Severina, I.I., Skulachev, P. 1970. Conversion of biomembranes produced energy into electrical form. II. Intact mitochondria.Biochim. Biophys. Acta 216:13

  5. Bakker, E.P., Rottenberg, J., Caplan, S.P. 1976. An estimation of the light induced electrochemical potential difference on protons across the membrane ofHalobacterium holobium.Biochim. Biophys. Acta 440:557

  6. Cabantchik, Z.I., Rothstein, A. 1972. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives.J. Membrane Biol. 10:311

  7. Cabantchik, Z.I., Rothstein, A. 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disufonic stilbene binding sites in proteins involved in permeation.J. Membrane Biol. 15:207

  8. Clausen, T., Rodbell, M., Durand, P. 1969. The metabolism of isolated fat cells. VII. Sodium-linked, energy-dependent, and ouabain-sensitive potassium accumulation in ghosts.J. Biol. Chem. 244:1252

  9. Dahl, J.L., Hokin, L.E. 1974. The Na+−K+ ATPase.Annu. Rev. Biochem. 43:327

  10. Deutsch, C., Erecinska, R., Werrlein, R., Silver, I.A. 1979a. Cellular energy metabolism, trans-plasma, and trans-mitochondrial membrane potentials and pH-gradients in mouse neuroblastoma.Proc. Nat. Acad. Sci. USA 76:2175

  11. Deutsch, C.J., Holiam, A., Holiam, S.K., Daniele, R.P., Wilson, D.F. 1979b. Transmembrane electrical and pH gradients across human erythrocytes and human peripheral lymphocytes.J. Cell. Physiol. 99:79

  12. Deutsch, C., Küla, T. 1978. Transmembrane electrical and pH gradients ofP. denitrificans and their relationship to oxidative phosphorylation.FEBS Lett. 87:145

  13. Freedman, J.C., Hoffman, J.F. 1979a. Ionic and osmotic equilibria of human red blood cells treated with nystatin.J. Gen. Physiol. 74:157

  14. Freedman, J.C., Hoffman, J.F. 1979b. The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria.J. Gen. Physiol. 74:187

  15. Fünder, J., Wieth, J.O. 1966. Chloride and hydrogen ion distribution between human red cells and plasma.Acta Physiol. Scand. 68:234

  16. Gliemann, J., Osterlind, K., Vinten, J., Gammeltoft, S. 1972. A procedure for measurement of distribution spaces in isolated fat cells.Biochim. Biophys. Acta 286:1

  17. Grinius, L.L., Jasaitas, A.A., Kadziauskas, Y.P., Liberman, E.A., Skulachev, V.P., Topali, V.P., Tsofina, L.M., Vladimirova, M.A. 1970. On conversions of biomembrane produced energy into electric form. I. Submitochondrial particles.Biochim. Biophys. Acta 216:1

  18. Grollman, E.F., Lee, G., Ambesi-Impiombato, H.G., Meldolesi, M.F., Aloj, S.M., Coon, H.G., Kaback, H.R., Kohn, L.D. 1977. Effects of thyrotropin on the thyroid cell membrane: Hyperpolarization induced by hormone-receptor interaction.Proc. Nat. Acad. Sci. USA 74:2352

  19. Harris, E.J., Maizels, M. 1952. Distribution of ions in suspensions of human erythrocytes.J. Physiol. (London) 118:40

  20. Heinz, E.D., Geck, P., Peitreyk, C. 1975. Driving forces of amino acid transport in animal cells.Ann. N.Y. Acad. Sci. 264:428

  21. Hirata, H., Altendorf, J., Harold, F.M. 1973. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles ofEscherichia coli.Proc. Nat. Acad. Sci. USA 70:1804

  22. Hoffman, J.E., Laris, P.C. 1974. Determinations of membrane potentials in human andamphiuma red blood cells by means of a fluorescent probe.J. Physiol. (London) 239:519

  23. Hoffman, J.F., Lassen, U.V. 1971. Plasma membrane potentials in amphibian red cells.Proc. Int. Union Physiol. Sci. 9:253 (abstr.)

  24. Horn, L.W., Rogus, E.M., Zierler, K.L. 1973. Water content of isolated fat cells.Biochim. Biophys. Acta 313:399

  25. Horn, L.W., Zierler, K.L. 1975. Effects of external potassium on potassium efflux and accumulation by rat white adipocytes.J. Physiol. (London) 253:207

  26. Hunter, M.J. 1971. A quantitative estimate of the non-exchangerestricted chloride permeability of the human red cell.J. Physiol. (London) 218:49P (abstr.)

  27. Hunter, M.J. 1974. The use of lipid bilayer as cell membrane models: An experimental test using the ionophore, valinomycin.In: Drugs and Transport Processes. B.A. Callinghan, editor. p. 227. Macmillan, London

  28. Katz, B. 1966. Nerve, Muscle, and Synapse. p. 41. McGraw Hill, New York

  29. Kimmich, G.A., Philo, R.D., Eddy, A.A. 1977. The effects of ionophores on the fluorescence of the cation 3,3′-dipropyloxadicarbocyanine in the presence of pigeon erythrocytes, erythrocyte ghosts, or liposomes.Biochem. J. 168:81

  30. Knauf, P.A., Fuhrman, D.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membranes.J. Gen. Physiol. 69:363

  31. Komar, E., Tanner, W. 1976. The determination of the membrane potential ofChlorella vulgaris. Evidence for electrogenic sugar transport.Eur. J. Biochem. 70:197

  32. Korchak, H.M., Weissman, G. 1978. Change in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation.Proc. Nat. Acad. Sci. USA 75:3818

  33. Lassen, U.V. 1972. Membrane potential and membrane resistance of red cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status, M. Rorth and Astrüp, P., editors. p. 291. Academic Press, New York

  34. Lassen, U.V., Nielsen, A.M.T., Page, L., Simonsen, L.O. 1971. The membrane potential of Ehrlich ascites tumor cells. Microelectrode measurements and their critical evaluation.J. Membrane Biol. 6:269

  35. Lichtshtein, D., Dunlop, K., Kaback, H.R., Blume, A.J. 1979a. Mechanism of monensin induced hyperpolarization of neuroblastoma-glioma hybrid WG108-15.Proc. Nat. Acad. Sci. USA 76:2580

  36. Lichtshtein, D., Kaback, H.R., Blume, A.J. 1979b. Use of lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions.Proc. Nat. Acad. Sci. USA 76:650

  37. Livingston, J.N., Lockwood, D.H. 1974. Direct measurements of sugar uptake in small and large adipocytes from young and adult rats.Biochem. Biophys. Res. Commun. 61:989

  38. Lombardi, F.J., Reeves, J.P., Short, S.A., Kaback, H.R. 1974. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles.Ann. N.Y. Acad. Sci. 227:312

  39. Macey, R.I., Adorant, J.S., Orme, F.W. 1978. Erythrocyte membrane potentials determined by hydrogen ion distribution.Biochim. Biophys. Acta 512:284

  40. Miller, A.G., Budd, K. 1976. Evidence for a negative membrane potential and for movement of Cl against its electrochemical gradient in theAscomytes neocosmosporo vasinfect.J. Bacteriol. 132:741

  41. Miller, Z.V., Schlosser, G.H., Beigelman, P.M. 1966. Electrical potentials and isolated fat cells.Biochim. Biophys. Acta 112:375

  42. Minemura, T., Lacy, W.W., Crofford, O.B. 1970. Regulation of the transport and metabolism of amino acids in isolated fat cells. Effect of insulin and a possible role for adenosine 3′, 5′-monophosphate.J. Biol. Chem. 245:3872

  43. Perry, M.C., Hales, C.N. 1969. Rates of efflux and intracellular concentrations of potassium sodium, and chloride ions in isolated fat cells from the rat.Biochem J. 115:865

  44. Ramos, S., Grollman, E.F., Lazo, P.S., Dyer, S.A., Habig, W.H., Hardegree, M.C., Kaback, H.R., Kohn, L.D. 1979. Effect of tetanus toxin on the accumulation of the permeant lipophilic cation, tetraphenyl phosphonium by guinea pig brain synaptosomes.Proc. Nat. Acad. Sci. USA 76:4783

  45. Rodbell, M. 1964. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis.J. Biol. Chem. 239:375

  46. Russell, J.T., Beeler, T., Martonosi, A. 1979a. Optical probe responses on sarcoplasmic reticulum: Merocyanine and oxonal dyes.J. Biol. Chem. 254:2047

  47. Russell, J.T., Beeler, T., Martonosi, A. 1979b. Opical probe responses on sarcoplamic reticulum: Oxacarboxyanines.J. Biol. Chem. 254:2040

  48. Sarkadi, B., Szasz, I., Gardos, G. 1976. The use of ionophores for rapid loading of human red cells with radioactive cations in cation pump studies.J. Membrane Biol. 26:357

  49. Schuldiner, S., Kaback, H.R. 1975. Membrane potential and active transport in membrane vesicles fromEscherichia coli.Biochemisty 14:5451

  50. Skulachev, V.P. 1971. Energy transformation in the respiratory chain.In: Current Topics in Bioenergetics. D.R. Sanadi, editor. Vol. 4, p. 127. Academic Press, New York

  51. Waggoner, A.S. 1976. Optical probes of membrane potential.J. Membrane Biol. 27:317

  52. Waggoner, A.S. 1979. Dye indicators of membrane potentials.Annu. Rev. Biophys. Bioeng. 8:47

  53. Warburg, E.J. 1922. Carbonic acid compounds and hydrogen activities in blood and salt solutions.Biochem. J. 16:152

  54. Zierler, K.L. 1972. Insulin, ions, and membrane potentials.In: Handbook of Physiology Section 7: Endocrinology, Vol. I: Endocrine Pancreas. R.O. Greep, and E.B. Astwood, editors. Vol. 22, p. 347, Williams & Wilkins, Baltimore

Download references

Author information

Correspondence to Martin Sonenberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheng, K., Haspel, H.C., Vallano, M.L. et al. Measurement of membrane potentials (ψ) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation. J. Membrain Biol. 56, 191–201 (1980). https://doi.org/10.1007/BF01869476

Download citation

Keywords

  • Membrane Potential
  • Human Physiology
  • Human Erythrocyte
  • Rest Membrane Potential
  • Intracellular Water