The Journal of Membrane Biology

, Volume 31, Issue 1, pp 205–219 | Cite as

Electrical properties and active solute transport in rat small intestine

I. Potential profile changes associated with sugar and amino acid transports
  • Yasunobu Okada
  • Wakoh Tsuchiya
  • Akihiko Irimajiri
  • Akira Inouye


Addition ofd-glucose to the mucosal fluid resulted in a significant depolarization of the mucosal membrane potential (V m) in rat duodenum, jejunum, and ileum accompanied by an increase in the transepithelial potential difference (PD t). On the other hand,l-glucose did not inducePD t andV m changes. Glycine applied from the mucosal side also inducedV m-depolarization andPD t-increment in the ileum. Phlorizin added to the mucosal fluid or ouabain added to the serosal fluid inhibited the sugar-dependent changes inPD t andV m.

According to the analysis with an equivalent circuit model for the epithelium, it was concluded that an actively transported solute induced not only a depolarization of the mucosal (brush border) membrane but also a hyperpolarization of the serosal (baso-lateral) membrane of an epithelial cell, so that the origin of solute-inducedPD t changes should be attributed to changes in emf's at both membranes. The hyperpolarization of the serosal membrane in the presence of an actively transported solute was attributed to a mechanism of serosal electrogenic sodium pump stimulated by the increase in the extrusion rate of Na+ co-transported into the cell with sugar or amino acid.


Ouabain Mucosal Membrane Phlorizin Transepithelial Potential Difference Rabbit Ileum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, W.McD., Musselman, D.L., Reitzug, H.C. 1970. Sodium, potassium, and water content of isolated bullfrog small intestine epithelia.Am. J. Physiol. 219:1023PubMedGoogle Scholar
  2. Barry, R.J.C., Dickstein, S., Matthews, J., Smyth, D.H., Wright, E.M. 1964. Electrical potentials associated with interstinal sugar transport.J. Physiol. (London) 171:316Google Scholar
  3. Barry, R.J.C., Eggenton, J. 1972. Membrane potentials of epithelial cells in rat small intestine.J. Physiol. (London) 277:201Google Scholar
  4. Barry, R.J.C., Smyth, D.H., Wright, E.M. 1965. Short-circuit current and solute transfer by rat jejunum.J. Physiol. (London) 181:410Google Scholar
  5. Crane, R.K. 1965. Na+-dependent transport in the intestine and other animal tissue.Fed. Proc. 24:1000PubMedGoogle Scholar
  6. Csáky, T.Z., Esposito, G. 1969. Osmotic swelling of intestinal epithelial cells during active sugar transport.Am. J. Physiol. 217:753PubMedGoogle Scholar
  7. Csáky, T.Z., Hara, Y. 1965. Inhibition of active intestinal sugar transport by digitalis.Am. J. Physiol. 209:467PubMedGoogle Scholar
  8. Frizzell, R.A., Schultz, S.G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences.J. Gen. Physiol. 59:318PubMedCrossRefGoogle Scholar
  9. Frömter, E., Diamond, J. 1972. Route of passive ion permeation in epitheliaNature New Biol. 235:9PubMedGoogle Scholar
  10. Gilles-Baillien, M., Schoffeniels, E. 1965. Site of action ofl-alanine andd-glucose on the potential difference across the intestine.Arch. Int. Physiol. Biochim. 73:355PubMedCrossRefGoogle Scholar
  11. Hoshi, T., Komatsu, Y. 1968. Sugar-evoked potential in isolated toad intestine.Jpn. J. Physiol. 18:508PubMedCrossRefGoogle Scholar
  12. Kerkut, G.A., York, B. 1971. The Electrogenic Sodium Pump. Scientechnica, Bristol Koketsku, K. 1971. The electrogenic sodium pump.Adv. Biophys. 2:77Google Scholar
  13. Koopman, W., Schultz, S.G. 1969. The effect of sugars and amino acids on mucosal Na+ and K+ concentrations in rabbit ileum.Biochim. Biophys. Acta 173:338PubMedCrossRefGoogle Scholar
  14. Lyon, I., Crane, R.K. 1966. Studies on transmural potentialsin vitro in relation to intestinal absorption. I. Apparent Michaelis constants for Na+-dependent sugar transport.Biochim. Biophys. Acta 112:278PubMedCrossRefGoogle Scholar
  15. Lyon, I., Sheerin, H.E. 1971. Studies on transmural potentialsin vitro in relation to intestinal absorption. VI. The effect of sugars on electrical potential profiles in jejunum and ileum.Biochim. Biophys. Acta 249:1PubMedCrossRefGoogle Scholar
  16. Munck, B.G., Schultz, S.G. 1974. Properties of the passive conductance pathway acrossin vitro rat jejunum.J. Membrane Biol. 16:163CrossRefGoogle Scholar
  17. Newey, H., Parsons, B.J., Smyth, D.H. 1959. The site of action of phlorrhizin in inhibiting intestinal absorption of glucose.J. Physiol. (London) 148:83Google Scholar
  18. Okada, Y., Inouye, A. 1976a. Studies on the origin of the tip potential of glass microelectrode.Biophys. Struct. Mech. 2:31PubMedCrossRefGoogle Scholar
  19. Okada, Y., Inouye, A. 1976b. Electrical properties and ionic permeabilities in rat small intestine.Seibutsu Butsuri 16:126 (in Japanese)CrossRefGoogle Scholar
  20. Okada, Y., Irimajiri, A., Inouye, A. 1976a. Permeability properties and intracellular ion concentrations of epithelial cells in rat duodenum.Biochim. Biophys. Acta 436:15PubMedCrossRefGoogle Scholar
  21. Okada, Y., Irimajiri, A., Inouye, A. 1976b. Intracellular ion concentrations of epithelial cells in rat small intestine. Effects of external K+ and uphill transports of glucose and glycine.Jpn. J. Physiol. 24:263Google Scholar
  22. Okada, Y., Irimajiri, A., Inouye, A. 1977. Electrical properties and active solute transport in rat small intestine. II. Conductive properties of transepithelial routes.J. Membrane Biol. 31:221CrossRefGoogle Scholar
  23. Okada, Y., Sato, T., Inouye, A. 1975. Effects of potassium ions and sodium ions on membrane potential of epithelial cells in rat duodenum.Biochim. Biophys. Acta 413:104PubMedCrossRefGoogle Scholar
  24. Rose, R.C., Schultz, S.G. 1971. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences.J. Gen. Physiol. 57:639PubMedCrossRefGoogle Scholar
  25. Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solutes. Physiol. Rev.50:637PubMedGoogle Scholar
  26. Schultz, S.G., Frizzell, R.A., Nellans, H.N. 1974. Ion transport by mammalian small intestine.Annu. Rev. Physiol. 36:51PubMedCrossRefGoogle Scholar
  27. Schultz, S.G., Fuisz, R.E., Curran, P.F. 1966. Amino acid and sugar transport in rabbit ileum.J. Gen. Physiol. 49:849PubMedCrossRefGoogle Scholar
  28. Schultz, S.G., Zalusky, R. 1963. Transmural potential difference, shortcircuit current and sodium transport in isolated rabbit ileum.Nature (London) 198:894CrossRefGoogle Scholar
  29. Schultz, S.G., Zalusky, R. 1964a. Ion transport in isolated rabbit ileum. I. Short-circuit current and Na Fluxes.J. Gen. Physiol. 47:567PubMedCrossRefGoogle Scholar
  30. Schultz, S.G., Zalusky, R. 1964b. Ion transport in isolated rabbit ileum. II. The interaction between active sodium and sugar transport.J. Gen. Physiol. 47:1043PubMedCrossRefGoogle Scholar
  31. Tasaki, K., Tsukahara, Y., Ito, S., Wayner, M.J., Yu, W.Y. 1968. A simple direct and rapid method for filling microelectrodes.Physiol. Behav. 3:1009CrossRefGoogle Scholar
  32. White, J.F., Armstrong, W.McD. 1971. Effect of transported solutes on membrane potentials in bullfrog small intestine.Am. J. Physiol. 221:194PubMedGoogle Scholar
  33. Wright, E.M. 1966. The origin of the glucose dependent increase in the potential difference across the tortoise small intestine,J. Physiol. (London) 185:486Google Scholar

Copyright information

© Springer-Verlag New York Inc 1977

Authors and Affiliations

  • Yasunobu Okada
    • 1
  • Wakoh Tsuchiya
    • 1
  • Akihiko Irimajiri
    • 1
  • Akira Inouye
    • 1
  1. 1.Department of PhysiologyKyoto University School of MedicineKyotoJapan

Personalised recommendations