The Journal of Membrane Biology

, Volume 31, Issue 1, pp 171–188 | Cite as

Formation of ion channels by a negatively charged analog of gramicidin a

  • H. -J. Apell
  • E. Bamberg
  • H. Alpes
  • P. Läuger
Article

Summary

O-pyromellitylgramicidin is a derivative of gramicidin in which three carboxyl groups are introduced at the terminal hydroxyl end of the peptide. Experiments with artificial lipid membranes indicate that this negatively charged analog forms ion-permeable channels in a way similar to that of gramicidin. If O-pyromellitylgramicidin is added to only one aqueous solution, the membrane conductance remains small, but increases by several orders of magnitude if the same amount is also added to the other side. In accordance with the dimer model of the channel, the membrane conductance under symmetrical conditions is proportional to the square of the aqueous concentration of O-pyromellitylgramicidin over a wide range. The ratioΜPG/ΜG of the single-channel conductance of O-pyromellitylgramicidin to that of gramicidin is close to unity at high ionic strength, but increases more than fivefold at smaller ionic strength (0.01m). This observation is explained in terms of an electrostatic effect of the fixed negative charges localized near the mouth of the channel. In a mixture of O-pyromellitylgramicidin and gramicidin, unit conductance steps of intermediate size are observed in addition to the conductance steps corresponding to the pure compounds, indicating the formation of hybrid channels. Hybrid channels with preferred orientation may be formed if small amounts of gramicidin and O-pyromellitylgramicidin are added to opposite sides of the membrane. These hybrid channels show a distinct asymmetry in the current-voltage characteristic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bamberg, E., Benz, R. 1976. Voltage-induced thickness changes of lipid bilayer membranes and the effect of an electric field on gramicidin A channel formulation.Biochim. Biophys. Acta 426:570PubMedCrossRefGoogle Scholar
  2. Bamberg, E., Kolb, H.-A., Läuger, P. 1976. Ion transport through the gramicidin A channel.In: The Structural Basis of Membrane Function. Y. Hatefi and L. Djavadi-Ohaniance, editors. Academic Press, New YorkGoogle Scholar
  3. Bamberg, E., Läuger, P. 1973. Channel formation kinetics of gramicidin A in lipid bilayer membranes.J. Membrane Biol. 11:177CrossRefGoogle Scholar
  4. Bamberg, E., Läuger, P. 1974. Temperature-dependent properties of gramicidin A channels.Biochim. Biophys. Acta 367:127PubMedCrossRefGoogle Scholar
  5. Bamberg, E., Noda, K., Gross, E., Läuger, P. 1975. Single-channel parameters of gramicidin A, B and C.Biochim. Biophys. Acta 419:223Google Scholar
  6. Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339CrossRefGoogle Scholar
  7. Brown, R.H., Jr. 1974. Membrane surface charge: Discrete and uniform modelling.Progr. Biophys. Mol. Biol. 28:341CrossRefGoogle Scholar
  8. Cole, K.S. 1969. Zeta potential and discretevs. uniform charges.Biophys. J. 9:465PubMedCrossRefGoogle Scholar
  9. Drouin, H., Neumcke, B. 1974. Specific and unspecific charges at the sodium channels of the nerve membrane.Pfluegers Arch. 351:207CrossRefGoogle Scholar
  10. Hille, B., Woodhull, A.M., Shapiro, B.I. 1975. Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions, and pH.Philos. Trans. R. Soc. B 270:301CrossRefGoogle Scholar
  11. Hladky, S.B., Haydon, D.A. 1970. Discreteness of conductance changes in bimolecular lipid membranes in the presence of certain antibiotics.Nature (London) 225:451CrossRefGoogle Scholar
  12. Hladky, S.B., Haydon, D.A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel.Biochim. Biophys. Acta 274:294PubMedCrossRefGoogle Scholar
  13. Kolb, H.-A., Bamberg, E. 1976. Influence of Membrane Thickness and ion concentration on the properties of the gramicidin A channel: Autocorrelation, spectral power density, relaxation and single channel studies.Biochim. Biophys. Acta (in press) Google Scholar
  14. Kolb, H.-A., Läuger, P., Bamberg, E. 1975. Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gramicidin A channels.J. Membrane Biol. 20:133CrossRefGoogle Scholar
  15. Läuger, P. 1976. Diffusion-limited ion flow through pores.Biochim. Biophys. Acta (in press) Google Scholar
  16. Läuger, P., Lesslauer, W., Marti, E., Richter, J. 1967. Electrical properties of bimolecular phospholipid membranes.Biochim. Biophys. Acta 135:20PubMedCrossRefGoogle Scholar
  17. Maxwell, W.R., Partington, J.R. 1937. The dissociation constants of some polybasic acids. Part III.Trans. Faraday Soc. 33:670CrossRefGoogle Scholar
  18. Nelson, A.P., McQuarrie, D.A. 1975. The effect of discrete charges on the electrical properties of a membrane.J. Theor. Biol. 55:13PubMedCrossRefGoogle Scholar
  19. Ovchinnikov, Yu.A. 1972. Structure and membrane activity of peptide ionophores.In: Federation of European Biochemical Societies, 8th Meeting, Vol. 28, p. 279ff. North Holland, AmsterdamGoogle Scholar
  20. Tosteson, D.C., Andreoli, T.E., Tieffenberg, M., Cook, P. 1968. The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes.J. Gen. Physiol. 51:373SGoogle Scholar
  21. Urry, D.W. 1971. The gramicidin A transmembrane channel: A proposedπ (L,D) helix.Proc. Nat. Acad. Sci. 68:672PubMedCrossRefGoogle Scholar
  22. Urry, D.w. 1972. A molecular theory of ion-conducting channels: A field-dependent transition between conducting and nonconducting conformations.Proc. Nat. Acad. Sci. 69:1610PubMedCrossRefGoogle Scholar
  23. Veatch, W.R. 1976. The structure of the Gramicidin A trans-membrane Channel20th Annu. Meet. Biophys. Soc. (Abstr.)Google Scholar
  24. Veatch, W.R., Fossel, E.T., Blout, E.R. 1974. The conformation of gramicidin A. Biochemistry13:5249PubMedCrossRefGoogle Scholar
  25. Veatch, W.R., Mathies, R., Eisenberg, M., Stryer, L. 1976. Simultaneous fluorescence and conduction studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A. J. Mol. Biol.99:75CrossRefGoogle Scholar
  26. Veatch, W.R., Stryer, L. 1976. The dimeric nature of the gramicidin A transmembrane channel, conductance and fluorescence energy tranfer studies of hybrid channels.J. Mol. Biol. (in press) Google Scholar
  27. Woodhull, A.M. 1973. Ionic blockage of sodium channels in nerve.J. Gen. Physiol. 61:687PubMedCrossRefGoogle Scholar
  28. Zingsheim, H.P., Neher, E. 1974. The equivalence of fluctuation analysis and chemical relaxation experiments: A kinetic study of ion pore formation in thin lipid membranes.Biophys. Chem. 2:197PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1977

Authors and Affiliations

  • H. -J. Apell
    • 1
  • E. Bamberg
    • 1
  • H. Alpes
    • 1
  • P. Läuger
    • 1
  1. 1.Department of BiologyUniversity of KonstanzKonstanzGermany

Personalised recommendations