The Journal of Membrane Biology

, Volume 92, Issue 3, pp 195–205 | Cite as

Identification of the anion exchange protein of ehrlich cells: A kinetic analysis of the inhibitory effects of 4,4′-diisothiocyano-2,2′-stilbene-disulfonic acid (DIDS) and labeling of membrane proteins with3H-DIDS

  • Flemming Jessen
  • Carsten Sjøholm
  • Else K. Hoffmann


In Ehrlich ascites tumor cells 4,4′-diisothiocyano-2,2′-stillbene-disulfonic acid (DIDS) inhibits the chloride exchange both reversibly and irreversibly. The reversible inhibition is practically instantaneous and of a competitive nature withK1 about 2 μm at zero chloride concentration. This is succeeded by a slow irreversible binding of DIDS to the transporter, with a chloride dependence suggesting binding to the same site as for reversible DIDS binding/inhibition. To identify the membrane protein involved in anion exchange, cells were labeled with3H-DIDS. Incubation of cells for 10 min with 25 μm DIDS at pH 8.2 leads to more than 95% inhibition of the DIDS-sensitive chloride exchange flux when the chloride concentration is low (15mm). This condition was used for the3H-DIDS-labeling experiments. After incubation the cells were disrupted, the membranes isolated and solubilized, and the proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The distribution of the3H-activity in the gel showed only one major peak, which could be related to protein with a mol wt of about 30,000 Daltons. The number of transport sites was estimated at about 400,000 per cell, and from the DIDS-sensitive chloride flux under steady-state conditions we calculate a turnover number of 340 ions per sec per site.

Key Words

anion exchange DIDS Ehrlich ascites tumor cells chloride fluxes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aull, F. 1982. Specific drug sensitive transport pathways for chloride and potassium ions in steady-state Ehrlich mouse ascites tumor cells.Biochim. Biophys. Acta 688:740–746Google Scholar
  2. Aull, F., Nachbar, M.S., Oppenheim, J.D. 1977. Chloride self exchange in Ehrlich ascites cells. Inhibition by furosemide and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid.Biochim. Biophys. Acta 471:341–347Google Scholar
  3. Bjerrum, P.J., Wieth, J.O., Borders, C.L. 1983. Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein.J. Gen. Physiol. 81:453–484PubMedGoogle Scholar
  4. Brahm, J. 1977. Temperature-dependent changes of chloride transport kinetics in human red cells.J. Gen. Physiol. 70:283–306Google Scholar
  5. Brazy, P.C., Gunn, R.B. 1976. Furosemide inhibition of chloride transport in human red blood cells.J. Gen. Physiol. 68:583–599CrossRefPubMedGoogle Scholar
  6. Cabantchik, Z.I., Knauf, P.A., Rothstein, A. 1978. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of “probes.”.Biochim. Biophys. Acta 515:239–302PubMedGoogle Scholar
  7. Cabantchik, Z.I., Rothstein, A. 1972. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives.J. Membrane Biol. 10:311–330Google Scholar
  8. Cabantchik, Z.I., Rothstein, A. 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation.J. Membrane Biol. 15:207–226Google Scholar
  9. Deuticke, B. 1977. Properties and structural basis of simple diffusion pathways in the erythrocyte membrane.Rev. Physiol. Biochem. Pharmacol. 78:500–503Google Scholar
  10. Fröhlich, O., Gunn, R.B. 1981. Binding of cis and transisomers of 4,4-dinitrostilbene-2,2′-disulfonate (DNDS) to the erythrocyte anion transporter.In: Adv. Physiol. Sci., Vol. 6. Genetics, Structure and Function of Blood Cells. S.R. Hollan, G. Gardos, and B. Sarkadi, editors. pp. 275–280. Pergamon, Akademiai KiadoGoogle Scholar
  11. Geck, P., Pitrzyk, C., Burckhardt, B.C., Pfeiffer, B., Heinz, E. 1980. Electrically silent co-transport of Na+, K+ and Cl in Ehrlich cells.Biochim. Biophys. Acta 600:432–447Google Scholar
  12. Green, A.G., Wahl, A.R. 1897. Uber de Oxydation von Parannitrotoluolsulfonsaure.Ber. D. Cem. Ges. p. 3097Google Scholar
  13. Hoffmann, E.K. 1982. Anion exchange and anion-cation cotransport systems in mammalian cells.Philos. Trans. R. Soc. London B 299:519–535Google Scholar
  14. Hoffmann, E.K., Schiødt, M., Dunham, P.B. 1986. The number of chloride-cation cotransport sites on Ehrlich ascites cells measured with3H-bumetanide.Am. J. Physiol. (in press) Google Scholar
  15. Hoffmann, E.K., Simonsen, L.O., Lambert, I.H. 1984. Volumeinduced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+.J. Membrane Biol. 78:211–222Google Scholar
  16. Hoffmann, E.K., Simonsen, L.O., Sjøholm, C. 1979. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumor cells.J. Physiol. (London) 296:61–84Google Scholar
  17. Hoffmann, E.K., Sjøholm, C., Simonsen, L.O. 1981. Anioncation co-transport and volume regulation in Ehrlich ascites tumour cells.J. Physiol. (London) 319:94P-95PGoogle Scholar
  18. Hoffmann, E.K., Sjøholm, C., Simonsen, L.O. 1983. Na+, Cl cotransport in Ehrlich ascites tumor cells activated during volume regulation (Regulatory volume increase).J. Membrane Biol. 76:269–280CrossRefGoogle Scholar
  19. Knauf, P.A. 1979. Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure.In: Carriers and Membrane Transport Proteins. F. Bronner and A. Kleinzeller, editors. Vol. 12, pp. 249–363. Academic, New YorkGoogle Scholar
  20. Knauf, P.A., Rothstein, A. 1971. Chemical modification of membranes. I. Effect of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell.J. Gen. Physiol. 58:190–210PubMedGoogle Scholar
  21. Knauf, P.A., Ship, S., Breuer, W., McCullock, L., Rothstein, A. 1978. Asymmetry of the red cell anion exchange system Different mechanisms of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate(NAP-taurine) at the inside and outside of the membrane.J. Gen. Physiol. 72:607–630CrossRefPubMedGoogle Scholar
  22. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680Google Scholar
  23. Lepke, S., Fasold, H., Pring, M., Passow, H. 1976. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4′-diisothiocyano-stilbene-2,2′-disulfonic acid (DIDS) and its dihydro derivative (H2DIDS).J. Membrane Biol. 29:147–177Google Scholar
  24. Levinson, C. 1978. Chloride and sulfate transport in Ehrlich ascites tumor cells: Evidence for a common mechanism.J. Cell. Physiol. 95:23–32PubMedGoogle Scholar
  25. Levinson, C. 1980. Transport of anions in Ehrlich ascites tumor cells: Effects of disulfonic acid stilbene in relation to transport mechanism.Ann. N.Y. Acad. Sci. 431:482–493Google Scholar
  26. Levinson, C. 1984. Self-inhibition of chloride transport in Ehrlich ascites tumor cells.J. Cell. Physiol. 121:442–448PubMedGoogle Scholar
  27. Levinson, C., Corcoran, R.J., Edwards, E.H. 1979. Interaction of tritium-labeled H2DIDS (4,4′-diisothiocyano-1,2-diphenylethane-2,2′ disulfonic acid) with the Ehrlich mouse ascites tumor cell.J. Membrane Biol. 45:61–79Google Scholar
  28. Ramjeesingh, M., Gaarn, A., Rothstein, A. 1981. The amino acid conjugate formed by the interaction of the anion transport inhibitor 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS) with band 3 protein from human red blood cell membranes.Biochim. Biophys. Acta 641:173–182PubMedGoogle Scholar
  29. Rothstein, A., Ramjeesingh, M., Grinstein, S. 1980. The arrangement of transport and inhibitory sites in band 3 protein.In: Membrane Transport in Erythrocytes. Relations between Function and Molecular Structure. Alfred Benzon Symposium 14. U.V. Lassen, H.H. Ussing and J.O. Wieth, editors. pp. 329–340. Munksgaard, CopenhagenGoogle Scholar
  30. Shami, Y., Rothstein, A., Knauf, P.A. 1978. Identification of the Cl transport site of human red blood cells by a kinetic analysis of the inhibitory effects of a chemical probe.Biochim. Biophys. Acta 508:357–363PubMedGoogle Scholar
  31. Ship, S., Shami, Y., Breuer, W., Rothstein, A. 1977. Synthesis of tritiated 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid ([3H]-DIDS) and its covalent reaction with sites related to anion transport in human red blood cells.J. Membrane Biol. 33:311–323Google Scholar
  32. Simonsen, L.O., Nielsen, A.-M.T. 1971. Exchangeability of chloride in Ehrlich ascites tumor cells.Biochim. Biophys. Acta 241:522–527PubMedGoogle Scholar
  33. Sjøholm, C., Hoffmann, E.K., Simonsen, L.O. 1981. Anioncation co-transport and anion exchange in Ehrlich ascites tumor cells.Acta Physiol. Scand. 112:24AGoogle Scholar
  34. Villereal, M.L., Levinson, C. 1976. Inhibition of sulfate transport in Ehrlich ascites tumor cells by 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS).J. Cell. Physiol. 89:303–312PubMedGoogle Scholar
  35. Webb, J.L. 1963. Enzyme and Metabolic Inhibitors. Vol. I. Academic, New York-LondonGoogle Scholar
  36. Wieth, J.O., Bjerrum, P.J. 1982. Titration of transport and modifier sites in the red cell anion transport system.J. Gen. Physiol. 79:253–282PubMedGoogle Scholar
  37. Wieth, J.O., Bjerrum, P.J. 1983. Transport and modifier sites in capnophorin, the anion transport protein of the erythrocyte membrane.In: Structure and Function of Membrane Proteins. E. Quagliariello, and F. Palmieri, editors. pp. 95–106. Elsevier, AmsterdamGoogle Scholar
  38. Wieth, J.O., Brahm, J. 1985. Cellular anion transport.In: The Kidney Physiology and Pathophysiology. D.W. Seldin, and G. Giebisch, editors. Vol. 1. pp. 49–89. Raven, New YorkGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Flemming Jessen
    • 1
  • Carsten Sjøholm
    • 2
  • Else K. Hoffmann
    • 1
  1. 1.Institute of Biological Chemistry A, August Krogh InstituteUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Novo Industri A/SBagsvaerdDenmark

Personalised recommendations