The Journal of Membrane Biology

, Volume 56, Issue 1, pp 19–29 | Cite as

Determination of ion permeability through the channels made of porins from the outer membrane ofSalmonella typhimurium in lipid bilayer membranes

  • Roland Benz
  • Junko Ishii
  • Taiji Nakae


The three types of porin (matrix-proteins) fromSalmonella typhimurium with molecular weights of 38,000, 39,000 and 40,000 were reconstituted with lipid bilayer membranes either as a trimer or as an oligomer (complex I). The specific conductance of the membranes increased several orders of magnitude after the addition of the porins into the aqueous phase bathing the membranes. A linear relationship between protein concentration in the aqueous phase and membrane conductance was found. In the case of lower protein concentrations (10−12m), the conductance increased in a stepwise fashion with a single conductance increment of 2.3 nS in 1m KCl. For a given salt the conductance increment was found to be largely independent of the particular porin (38 K, 39K or 40 K) and on the state of aggregation, although porin oligomers showed an up to 10 times smaller conductance increase in macroscopic conductance measurements. The conductance pathway has an ohmic current voltage characteristic and a poor selectivity for different alkali ions. Further information on the structure of the pores formed by the different porins fromSalmonella was obtained from the selectivity for various ions. From the permeability of the pore for large ions (Tris+, glucosamine+, Hepes_ a minimum pore diameter of 0.8 nm is estimated. This value is in agreement with the size of the pore as calculated from the conductance data for 1m KCl (1.4 nm for a pore length of 7.5 nm). The pore diameter may well account for the sugar permeability which has been found in reconstituted vesicles. The findings reported here are consistent with the assumption that the different porins form large aqueous channels in the lipid bilayer membranes and that the single condutance unit is a trimer. In addition, it is suggested that one trimer contains only one pore rather than a bundle of pores.


Oligomer Glucosamine Current Voltage Characteristic Lipid Bilayer Membrane Membrane Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames, G.F., Spudick, E.N., Nikaido, H. 1974. Protein composition of the outer membrane ofSalmonella typhimurium: Effect of lipopolysaccharide mutations.J. Bacteriol. 117:406Google Scholar
  2. 2.
    Benz, R., Boehler-Kohler, B.A., Dieterle, R., Boos, W. 1978. Porin activity in the osmotic shock fluid ofEscherichia colli.J. Bacteriol. 135:1080Google Scholar
  3. 3.
    Benz, R., Janko, K., Boos, W., Läuger, P., 1978. Formation of large, ion-permeable membrane channels by the matrix protein (porin) ofEscherichia coli.Biochim. Biophys. Acta 511:305Google Scholar
  4. 4.
    Benz, R., Janko, K., Läuger, P. 1979. Ionic selectivity of pores formed by the matrix protein (porin) ofEscherichia coli.Biochim. Biophys. Acta 551:238Google Scholar
  5. 5.
    Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycinmediated transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339Google Scholar
  6. 6.
    Boehler-Kohler, B.A., Boos, W., Dieterle, R., Benz, R. 1979. Receptor for bacteriophage lambda ofEscherichia coli forms larger pores in black lipid membrane than the matrix protein (porin).J. Bacteriol. 138:33Google Scholar
  7. 7.
    Boheim, G. 1974. Statistical analysis of alamethicin channels in black lipid membranes.J. Membrane Biol. 19:277Google Scholar
  8. 8.
    Decad, G.M., Nikaido, H. 1976. Outer membrane of gramnegative bacteria. XII. Molecular sieving function of cell wall.J. Bacteriol. 128:325Google Scholar
  9. 9.
    DiRienzo, J.M., Inouye, M. 1979. Lipid fluidity-dependent biosynthesis and assembly of the outer membrane proteins ofE.coli. Cell. 17:155Google Scholar
  10. 10.
    DiRienzo, J.M., Nakamura, K., Inouye, M. 1978. The outer membrane of gram-negative bacteria: Biosynthesis, assembly and function.Annu. Rev. Biochem. 47:481Google Scholar
  11. 11.
    Henning, U., Höhn, B., Sonntag, J. 1973. Cell envelope and shape ofEscherichia coli K12. The ghost membrane.Eur. J. Biochem. 39:27Google Scholar
  12. 12.
    Konigs, W.N. 1977. Active transport of solutes in bacterial membrane vesicles.Adv. Microb. Physiol. 15:175Google Scholar
  13. 13.
    Lutkenhans, J.F. 1977. Role of a major outer membrane protein inEscherichia coli.J. Bacteriol. 131:631Google Scholar
  14. 14.
    Mizushima, S., Yamada, H. 1975. Isolation and characterization of two outer membrane preparations fromEscherichia coli.Biochim. Biophys. Acta 375:44Google Scholar
  15. 15.
    Nakae, T. 1976. Outer membrane ofSalmopella typhimurium: Reconstitution of sucrose-permeable vesicles.Biochem. Biophys. Res. Commun. 64:1224Google Scholar
  16. 16.
    Nakae, T. 1976. Identification of the outer membrane protein ofEscherichia coli that produces transmembrane channels in reconstituted vesicle membranes.Biochem. Biophys. Res. Commun.71:877Google Scholar
  17. 17.
    Nakae, T. 1979. Outer membrane of Salmonella: Isolation of protein complex that produces trasmembrane channels.J. Biol. Chem. 251:2176Google Scholar
  18. 18.
    Nakae, T., Ishii, J. 1978. Transmembrane permeability channels in vesicles reconstituted from single species of porins fromSalmonella typhimurium.J. Bacteriol. 133:1412Google Scholar
  19. 19.
    Nakae, T., Ishii, J., Tokunage, M. 1979. Subunit structure of functional porin oligomers that form permeability channels in the outer membrane ofEscherichia coli.J. Biol. Chem. 254:1457Google Scholar
  20. 20.
    Nakae, T., Nikaido, H. 1975. Outer membrane as a diffusion barrier inSalmonella typhimurium.J. Biol. Chem. 250:7359Google Scholar
  21. 21.
    Nikaido, H. 1979. Permeability of the outer membrane of bacteria.Angew. Chem. Int. Ed. Engl. 18:337Google Scholar
  22. 22.
    Nikaido, H., Song, S.A., Shaltiel, L., Nurmineu, M. 1977. Out membranes ofSalmonella. XIV. Reduced transmembrane diffusion rates in porin-deficient mutants.Biochem. Biophys. Res. Commun. 76:324Google Scholar
  23. 23.
    Nixdorf, K., Fitzer, H., Gmeiner, J., Martin, H.H. 1977. Reconstitution of model membranes from phospholipid and outer membrane proteins fromProteus mirabilis: Role of proteins in the formation of hydrophilic pores and protection of membranes against detergents.Eur. J. Biochem. 81:63Google Scholar
  24. 24.
    Nurminen, M., Lounatmaa, K., Sarvas, M., Mäkelä, P.H., Nakae, T. 1976. Bacteriophage-resistant mutants ofSalmonella typhimurium deficient in two major outer membrane proteins.J. Bacteriol. 127:941Google Scholar
  25. 25.
    Palva, E.T., Randall, L.L. 1978. Arragement of protein I inEscherichia coli outer membrane: Cross-linking studies.J. Bacteriol. 133:279Google Scholar
  26. 26.
    Rosenbusch, J.P. 1974. Characterization of the major envelope protein fromEscherichia coli.J. Biol. Chem. 249:8019Google Scholar
  27. 27.
    Sanders, H. 1967. Preparative isolation of phosphatidyl serine from brain.Biochim. Biophys. Acta 144:485Google Scholar
  28. 28.
    Schindler, H., Rosenbusch, J.P. 1978. Matrix protein fromEscherichia coli outer membranes forms voltage-controlled channels in lipid bilayer membranes.Proc. Nat. Acad. Sci. USA 75:3751Google Scholar
  29. 29.
    Schmitges, C.J., Henning, U. 1976. The major proteins of theEscherichia coli outer cell-envelope membrane: Heterogeneity of protein I.Eur. J. Biochem. 63:47Google Scholar
  30. 30.
    Schnaitman, C.A. 1974. Outer membrane protein fromE. coli. III. Evidence that the major protein ofEscherichia coli 0111 outer membrane consists of four distinct polypeptides species.J. Bacteriol. 183:442Google Scholar
  31. 31.
    Singleton, W.S., Gray, M.S., Brown, M.L., White, J.L. 1965. Chromatographically homogenous lecithin from egg phospholipids.J. Am. Oilchem. Soc. 42:53Google Scholar
  32. 32.
    Steven, A.C., Heggler, B. ten, Müller, R., Kistler, J., Rosenbuch, J.P. 1977. Ultrastructure of a periodic protein layer in the outer membrane ofEscherichia coli.J. Cell Biol. 72:292Google Scholar
  33. 33.
    Stock, J.B., Rauch, B., Roseman, S. 1977. Periplasmic space inSalmonella typhimurium andEscherichia coli.J. Biol. Chem. 252:7850Google Scholar
  34. 34.
    Tokunaga, H., Tokunaga, M., Nakae, T. 1979. Characterization of porins from the outer membrane ofSalmonella typhimurium.Eur. J. Biochem. 95:433Google Scholar
  35. 35.
    Tokunaga, M., Tokunaga, H., Okajima, Y., Nakae, T. 1979. Characterization of porins from outer membrane ofSalmonella typhimurium. 2. Physical properties of the functional oligomers aggregates.Eur. J. Biochem. 95:441Google Scholar
  36. 36.
    Ueki, T., Mitsui, T., Nikaido, H. 1979. X-ray diffraction studies of outer membranes ofSalmonella typhimurium.J. Biochem. 85:173Google Scholar

Copyright information

© Springer-Verlag New York Inc 1980

Authors and Affiliations

  • Roland Benz
    • 1
    • 2
  • Junko Ishii
    • 1
    • 2
  • Taiji Nakae
    • 1
    • 2
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzGermany
  2. 2.Tokai University School of MedicineBohseidai, IseharaJapan

Personalised recommendations