Advertisement

The Journal of Membrane Biology

, Volume 45, Issue 1–2, pp 37–42 | Cite as

A model for proton translocation in biomembranes based on keto-enol shifts in hydrogen bonded peptide groups

  • Celik Kayalar
Article

Summary

A mechanism is proposed for the translocation of protons through the hydrogen bonded peptide groups of a protein by means of keto-enol tautomerization. The model is discussed in relation to energy coupling in biomembranes.

Keywords

Hydrogen Peptide Human Physiology Energy Coupling Peptide Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyer, P.D. 1975. A model for conformational coupling of membrane potential and proton translocation to ATP synthesis and to active transport.FEBS Lett. 58:1Google Scholar
  2. Boyer, P.D., Chance, B., Ernster, L., Mitchell, P., Racker, E., Slater, E.C. 1977. Oxidative phosphorylation and photophosphorylation.Annu. Rev. Biochem. 46:955Google Scholar
  3. Chance, B., Crofts, A.R., Nishimura, M., Price, B. 1970. Fast membrane H+ binding in the light-activated state of chromatin chromatophores.Eur. J. Biochem. 13:364Google Scholar
  4. Ernster, L., Juntti, K., Asami, K. 1973. Mechanisms of energy conservation in the mitochondrial membrane.J. Bioenerg. 4:149Google Scholar
  5. Ferguson, S.J., Lloyd, W.J., Radda, G.K. 1976. On the nature of the energized state of submitochondrial particles: Investigations with N-aryl naphthalene sulphonate probes.Biochim. Biophys. Acta 423:174Google Scholar
  6. Kayalar, C., Rosing, J., Boyer, P.D. 1977. An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions.J. Biol. Chem. 252:2486Google Scholar
  7. Lewis, A., Spoonhower, J., Bogomolni, R.A., Lozier, K.H., Stoeckenius, W. 1974. Tunable laser raman spectroscopy of bacteriorhodopsin.Proc. Nat. Acad. Sci. USA 71:4462Google Scholar
  8. Lozier, R.H., Bogomolni, R.A., Stoeckenius, W. 1975. Bacteriorhodopsin: A light-driven proton pump inhalobacterium halobium.Biophys. J. 15:955Google Scholar
  9. Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism.Nature (London) 191:144Google Scholar
  10. Mitchell, P. 1966. Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Glynn Research, Ltd., Bodmin, EnglandGoogle Scholar
  11. Mitchell, P. 1974. A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatase.FEBS Lett. 43:189Google Scholar
  12. Nagle, J.F., Morowitz, H.J. 1978. Molecular mechanisms for proton transport in membranes.Proc. Nat. Acad. Sci. USA 75:298Google Scholar
  13. Oesterhelt, D., Stoeckenius, W. 1973. Functions of a new photoreceptor membrane.Proc Nat. Acad. Sci. USA 70:2853Google Scholar
  14. Papa, S. 1976. Proton translocation reactions in the respiratory chains.Biochim. Biophys. Acta 456:39Google Scholar
  15. Racker, E. 1972. Reconstitution of cytochrome oxidase vesicles and conferral of sensitivity to energy transfer inhibitors.J. Membrane Biol. 10:221Google Scholar
  16. Racker, E. 1967. Resolution and reconstitution of the inner mitochondrial membrane.Fed. Proc. 26:1335Google Scholar
  17. Serrano, R., Kanner, B.I., Racker, E. 1976. Purification and properties of the proton-translocating adenosine triphosphatase complex of bovine heart mitochondria.J. Biol. Chem. 251:2453Google Scholar
  18. Schchipakin, V.N., Chuchlova, E.A., Evtodienko, Yu. V. 1976. Reconstruction of mitochondrial H+-transporting system in proteoliposomes.Biochem. Biophys. Res. Commun. 69:123Google Scholar
  19. Skulachev, V.P. 1975. Energy coupling in biological membranes, current state and perspectives.In: Energy Transducing Mechanisms. E. Racker, editor. pp. 31–73. Butterworth, Baltimore-Univ. Park-LondonGoogle Scholar
  20. Stoechenius, W. 1978. A model for the function of bacteriorhodopsin.Soc. Gen. Physiol. Serv. (in press) Google Scholar
  21. Williams, R.J.P. 1961. Possible functions of chains of catalysts.J. Theor. Biol. 1:1Google Scholar
  22. Yaguzhinskii, L.S., Boguslavskii, L.I., Volkov, A.G., Rakhmaninova, A.B. 1976. Synthesis of ATP coupled with action of membrane protonic pumps at the octane-water surface.Nature (London) 259:494Google Scholar
  23. Yoshida, M., Sone, N., Hirata, H., Kagawa, Y. 1975. A highly stable adenosine triphosphatase from a thermophilic bacterium.J. Biol. Chem. 250:7910Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Celik Kayalar
    • 1
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridge

Personalised recommendations