The Journal of Membrane Biology

, Volume 96, Issue 2, pp 97–106

Ion selectivity of epithelial Na channels

  • Lawrence G. Palmer
Topical Review

Key Words

Na transport apical membrane ion channels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benos, D.J. 1982. Amiloride: A molecular probe of sodium transport in tissues and cells.Am. J. Physiol. 242:C131-C145Google Scholar
  2. Benos, D.J., Mandel, L.J., Simon, S.A. 1980a. Effects of chemical group specific reagents on sodium entry and the amiloride binding site in frog skin: Evidence for separate sites.J. Membrane Biol. 56:149–158Google Scholar
  3. Benos, D.J., Mandel, L.J., Simon, S.A. 1980b. Cation selectivity and competition at the sodium entry site in frog skin.J. Gen. Physiol. 76:233–247Google Scholar
  4. Cass, A., Finkelstein, A., Krespi, V. 1970. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.J. Gen. Physiol. 56:100–124Google Scholar
  5. DiBona, D.R., Civan, M.M. 1973. Pathways for movement of ions and water across toad urinary bladder: I. Anatomic site of transepithelial shunt pathways.J. Membrane Biol. 12:101–128Google Scholar
  6. Eaton, D.C., Hamilton, K.L. 1987. The amiloride-blockable sodium channel of epithelial tissue.In: Ion Channels. Vol. 1. T. Narahashi, editor. Plenum, New York (in press)Google Scholar
  7. Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation.Biophys. J. 2(2):259–323Google Scholar
  8. Eisenman, G., Horn, R. 1983. Ion selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels.J. Membrane Biol. 76:197–225Google Scholar
  9. Finn, A.L., Nellans, H. 1972. The kinetics and distribution of potassium in the toad bladder.J. Membrane Biol. 8:189–203Google Scholar
  10. Frazier, H.S., Dempsey, E.F., Leaf, A. 1962. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:529–543Google Scholar
  11. Fuchs, W., Hviid-Larsen, E., Lindemann, B. 1977. Currentvoltage curve of sodium channels and concentration dependence in frog skin.J. Physiol. (London) 267:137–166Google Scholar
  12. Gatzy, J.T., Clarkson, T.W. 1965. The effect of mucosal and serosal solution changes on bioelectric properties of the isolated toad bladder.J. Gen. Physiol. 48:647–671Google Scholar
  13. Hamilton, K.L., Eaton, D.C. 1985. Single-channel recordings from amiloride-sensitive epithelial sodium channel.Am. J. Physiol. 249:C200-C207Google Scholar
  14. Hamilton, K.L., Eaton, D.C. 1986. Regulation of single sodium channels in renal tissue: A role of sodium homeostasis.Fed. Proc. 45:2713–2717Google Scholar
  15. Harms, V., Fanestil, D.D. 1977. Functions of apical membrane of toad urinary bladder: Effects of membrane impermeant reagents.Am. J. Physiol. 233:F607-F614Google Scholar
  16. Herrera, F.C., Egea, R., Herrera, A.M. 1971. Movement of lithium across the toad urinary bladder.Am. J. Physiol. 220:1501–1508Google Scholar
  17. Hille, B. 1971. The permeability of the sodium channel to organic cations in myelinated nerve.J. Gen. Physiol. 58:599–619Google Scholar
  18. Hille, B. 1975. Ionic selectivity of Na and K channels of nerve membranes.In: Membranes-a Series of Advances. Vol. 3, pp. 255–323. G. Eisenman, editor. Marcel Dekker, New YorkGoogle Scholar
  19. Hillyard, S.D., Zeiske, W., Van Driessche, W. 1982. Poorly selective cation channels in the skin of the larval frog (Stage ≤XIX).Pfluegers Arch. 394:287–293Google Scholar
  20. Hviid-Larsen, E., Kristensen, P. 1978. Properties of a conductive cellular chloride pathway in the skin of the toad (Bufobufo).Acta Physiol. Scand. 102:1–21Google Scholar
  21. Katz, U. 1978. Changes in ionic conductances and in sensitivity to amiloride during the natural moulting cycle of toad skin (Bufo viridis, L).J. Membrane Biol. 38:1–9Google Scholar
  22. Koefoed-Johnson, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308Google Scholar
  23. Läuger, P. 1973. Ion transport through pores: A rate-theory analysis.Biochim. Biophys. Acta 311:423–441Google Scholar
  24. Levitt, D.G., Elias, S.R., Hautman, J.M. 1978. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin.Biochim. Biophys. Acta 512:436–451Google Scholar
  25. Lewis, S.A., Eaton, D.C., Clausen, C., Diamond, J.M. 1977. Nystatin as a probe for investigating the electrical properties of a tight epithelium.J. Gen. Physiol. 70:427–440Google Scholar
  26. Lewis, S.A., Wills, N.K. 1983. Apical membrane permeability and kinetic properties of the sodium pump in rabbit urinary bladder.J. Physiol. (London) 341:169–184Google Scholar
  27. Lindemann, B. 1984. Fluctuation analysis of sodium channels in epithelia.Annu. Rev. Physiol. 46:497–515Google Scholar
  28. Lindemann, B., Van Driessche, W. 1977. Sodium specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195:292–294Google Scholar
  29. Lindley, B.D., Hoshiko, T. 1964. The effects of alkali metal cations and common anions on the frog skin potential.J. Gen. Physiol. 47:749–771Google Scholar
  30. Macknight, A.D.C., Hughes, P.M. 1981. Transepithelial lithium transport and cellular lithium in toad urinary bladder epithelial cells.In: Epithelial Ion and Water Transport. A.D.C. Macknight and J.P. Leader, editors. pp. 147–153. Raven, New YorkGoogle Scholar
  31. Miller, C. 1982. Coupling of water and ion fluxes in a K+-selective channel of sarcoplasmic reticulum.Biophys. J. 38:227–230Google Scholar
  32. Morf, W.E., Simon, W. 1971. Berechnung von freien hydratationsenthalpien und koordinationszahlen fur kationen aus leicht zuganglichen parametern.Helv. Chim. Acta 54:794–810Google Scholar
  33. Olans, L., Sariban-Sohraby, S., Benos, D.J. 1984. Saturation behavior of single amiloride-sensitive Na+ channels in planar lipid bilayers.Biophys. J. 46:831–835Google Scholar
  34. Palmer, L.G. 1982. Ion selectivity of the apical membrane Na channel in the toad urinary bladder.J. Membrane Biol. 67:91–98Google Scholar
  35. Palmer, L.G. 1984. Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder.J. Membrane Biol. 80:153–165Google Scholar
  36. Palmer, L.G. 1985. Interactions of amiloride and other blocking cations with the apical Na channel in the toad urinary bladder.J. Membrane Biol. 87:191–199Google Scholar
  37. Palmer, L.G. 1986a. The epithelial Na channel.In: New Insights into Cell and Cell Membrane Transport Processes. G. Poste and S.T. Crooke, editors. pp. 327–344. Plenum, New YorkGoogle Scholar
  38. Palmer, L.G. 1986b. Apical membrane K conductance in the toad urinary bladder.J. Membrane Biol. 92:217–226Google Scholar
  39. Palmer, L.G., Frindt, G. 1986a. Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule.Proc. Natl. Acad. Sci. USA 83:2767–2770Google Scholar
  40. Palmer, L.G., Frindt, G. 1986b. Epithelial Na channels; characterization using the patch clamp technique.Fed. Proc. 45:2708–2712Google Scholar
  41. Park, C.S., Kipnowski, J., Fanestil, D.D. 1983. Role of carboxyl group in Na+-entry step at apical membrane of toad urinary bladder.Am. J. Physiol. 245:F707-F715Google Scholar
  42. Robinson, B.A., Macknight, A.D.C. 1976. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder: III. Exchangeability of epithelial cellular potassium.J. Membrane Biol. 26:269–286Google Scholar
  43. Rosenberg, P.A., Finkelstein, A. 1978. Interactions of ions and water in gramicidin A channels. Streaming potentials across lipid bilayer membranes.J. Gen. Physiol. 72:327–340Google Scholar
  44. Sariban-Sohraby, S., Benos, D.J. 1986. The amiloride-sensitive sodium channel.Am. J. Physiol. 250:C175-C190Google Scholar
  45. Sariban-Sohraby, S., Latorre, R., Burg, M., Olans, L., Benos, D. 1984. Amiloride-sensitive epithelial Na+ channels reconstituted into planar lipid bilayer membranes.Nature (London) 308:80–82Google Scholar
  46. Sarracino, S.M., Dawson, D.C. 1979. Cation selectivity in active transport: Properties of the turtle colon in the presence of mucosal lithium.J. Membrane Biol. 46:295–313Google Scholar
  47. Ussing, H.H., Windhager, E.E. 1964. Nature of shunt path and active sodium transport through frog skin epithelium.Acta Physiol. Scand. 61:484–504Google Scholar
  48. Van Driessche, W., Lindemann, B. 1979. Concentration dependence of currents through single sodium-selective pores in frog skin.Nature (London) 282:519–520Google Scholar
  49. Zeiske, W., Lindemann, B. 1975. Blockage of Na channels in frog skin by titration with protons and by chemical modification of COO groups.Pfleugers Arc. 355:R71Google Scholar
  50. Zeiske, W., Van Driessche, W. 1979. Saturable K+ pathway across the outer border of frog skin (Rana temporaria): Kinetics and inhibition by Cs and other cations.J. Membrane Biol. 47:77–96Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Lawrence G. Palmer
    • 1
  1. 1.Department of PhysiologyCornell University Medical CollegeNew York

Personalised recommendations