Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Simultaneous measurements of optical and electrical properties of artificial membranes composed of mitochondrial lipids and their interaction with cytochromec

  • 39 Accesses

  • 7 Citations

Summary

A newly constructed cell, which allows simultaneous measurements of optical and electrical properties, was used to study bimolecular black membranes composed of beef heart mitochondrial lipids and their interaction with cytochromec.

The results show that these highly charged membranes are stable only in relatively limited ranges of boundary conditions. In 0.1n KCl their maximum direct current (dc) resistance is 7×108 Ohm cm2±10%; the series capacity at 1kHz is 0.43 μF/cm2±3%; the entire thickness, determined by optical reflectivity, is 5.8±0.2 nm.

The interaction between oxidized cytochromec and these lipid membranes is primarily of electrostatic nature, and dependent on the presence of highly charged phospholipids, such as diphosphatidyl glycerol (cardiolipin) and phosphatidyl ethanolamine. The attachment of cytochromec maximally causes a 2.5-fold increase in reflectivity, without any noticeable change in the capacity. This leads to a subsequent instability of the membrane (i.e., rupture) preceded by a rapid increase of the dc conductivity. This behavior is far less pronounced with reduced cytochromec.

This is a preview of subscription content, log in to check access.

References

  1. Cherry, R.J., Chapman, D. 1969a. Optical properties of black lecithin films.J. Mol. Biol. 40:19

  2. Cherry, R.J., Chapman, D. 1969b. Optical determination of the thickness of thin lipid films.J. Theor. Biol. 24:137

  3. Das, M.L., Crane, F.L. 1964. Proteolipids. I. Formation of phospholipid-cytochromec complexes.Biochemistry 3:696

  4. Das, M.L., Haak, E.D., Crane, F.L. 1965. Proteolipids. IV. Formation of complexes between cytochromec and purified phospholipids.Biochemistry 4:859

  5. Dawson, R.M.C., Quinn, P.J. 1971. The interaction of soluble proteins with lipid interfaces.In: Advances in Experimental Medicine and Biology. Vol.14, p. 1. Plenum Press, New York

  6. De Vries, A.J. 1958. Foam stability. Recl. Trav. Chim. Pays-Bas. IV. Kinetics and activation energy of film rupture.77:383

  7. Ernster, L., Kuylenstierna, B. 1970. Outer membranes of mitochondria.In: Membranes of Mitochondria and Chloroplasts. p. 172. Van Nostrand Reinhold Co., New York & London

  8. Fleischer, S., Brierley, G., Klouwen, H., Slautterback, D.B. 1962. Studies of the electron transfer system. XLVII. The role of phospholipids in electron transfer.J. Biol. Chem. 237:3264

  9. Fleischer, S., Rouser, G., Fleischer, B., Casu, A., Kritchevsky, G. 1967. Lipid composition of mitochondria from bovine heart, liver, and kidney.J. Lipid Res. 8:170

  10. Folch, J., Lees, M., Stanley, G.H.S. 1957. A simple method of the isolation and purification of total lipids from animal tissues.J. Biol. Chem. 226:497

  11. Gitler, C., Montal, M. 1972a. Thin proteolipid films: A new approach to the reconstitution of biological membranes.Biochem. Biophys. Res. Commun. 47:1486

  12. Gitler, C., Montal, M. 1972b. Formation of decane-soluble proteolipids: Influence of monovalent and divalent cations.FEBS Lett. 28:329

  13. Kimelberg, H.K., Lee, C.P., Claude, A., Mrena, E. 1970. Interactions of cytochromec with phospholipid membranes. I. Binding of cytochromec to phospholipid liquid crystals.J. Membrane Biol. 2:235

  14. Margoliash, E., Schejter, A. 1966. Cytochromec Adv. Protein Chem. 21:113

  15. Mueller, P., Rudin, C.P., Ti, Tien, H., Wescott, W.C. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system.Nature 194:980

  16. Nöll, G.G. 1976. A Cell for simultaneous measurements of optical and electrical properties of black lipid membranes.Z. Naturforsch. 31c:40

  17. Papahadjopoulos, D., Poste, G. 1975. Calcium-induced phase separation and fusion in phospholipid membranes.Biophys. J. 15:945

  18. Paul, K.G. 1947. Oxidation-reduction potential of cytochromec.Arch. Biochem. 12:441

  19. Person, Ph., Zipper, H., Felton, J.H. 1969. Cytochrome oxidase solubilization at high pH.Arch. Biochem. Biophys. 131:457

  20. Reich, M., Wainio, W.W. 1961a. A cytochromec-phospholipid complex.J. Biol. Chem. 236:3058

  21. Reich, M., Wainio, W.W. 1961b. Role of phospholipids in cytochromec oxidase activity.J. Biol. Chem. 236:3062

  22. Steinemann, A., Läuger, P. 1971. Interaction of cytochromec with phospholipid monolayers and bilayer membranes.J. Membrane Biol. 4:74

  23. Takano, T., Kalli, O.B., Swanson, R., Dickerson, R.E. 1973. The structure of ferrocytochromec at 2.45 Å resolution.J. Biol. Chem. 248:5234

  24. Theorell, H., Åkesson, Å. 1941. Studies on cytochromec. III. Titration curves.J. Am. Chem. Soc. 63:1820

  25. White, S.H. 1970. A study of lipid bilayer membrane stability using precise measurements of specific capacitance.Biophys. J. 10:1127

  26. Zöllner, N., Eberhagen, D. 1965. Untersuchung und Bestimmung der Lipoide im Blut. Springer-Verlag, Berlin

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nöll, G.G. Simultaneous measurements of optical and electrical properties of artificial membranes composed of mitochondrial lipids and their interaction with cytochromec . J. Membrain Biol. 27, 335–346 (1976). https://doi.org/10.1007/BF01869144

Download citation

Keywords

  • Electrical Property
  • Lipid Membrane
  • Direct Current
  • Ethanolamine
  • Phosphatidyl Ethanolamine