Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multiple separatrix crossing in multi-degree-of-freedom Hamiltonian flows

  • 89 Accesses

  • 5 Citations

Summary

We study separatrix crossing in near-integrablek-degree-of-freedom Hamiltonian flows, 2 <k < ∞, whose unperturbed phase portraits contain separatrices inn degrees of freedom, 1 <n <k. Each of the unperturbed separatrices can be recast as a codimension-one separatrix in the 2k-dimensional phase space, and the collection of these separatrices takes on a variety of geometrical possibilities in the reduced representation of a Poincaré section on the energy surface. In general 0 ≤ln of the separatrices will be available to the Poincaré section, and each separatrix may be completely isolated from all other separatrices or intersect transversely with one or more of the other available separatrices. For completely isolated separatrices, transitions across broken separatrices are described for each separatrix by the single-separatrix crossing theory of Wiggins, as modified by Beigie. For intersecting separatrices, a possible violation of a normal hyperbolicity condition complicates the analysis by preventing the use of a persistence and smoothness theory for compact normally hyperbolic invariant manifolds and their local stable and unstable manifolds. For certain classes of multi-degree-of-freedom flows, however, a local persistence and smoothness result is straightforward, and we study the global implications of such a local result. In particular, we find codimension-one partial barriers and turnstile boundaries associated with each partially destroyed separatrix. From the collection of partial barriers and turnstiles follows a rich phase space partitioning and transport formalism to describe the dynamics amongst the various degrees of freedom. A generalization of Wiggins' higher-dimensional Melnikov theory to codimension-one surfaces in the multi-separatrix case allows one to uncover invariant manifold geometry. In the context of this perturbative analysis and detailed numerical computations, we study invariant manifold geometry, phase space partitioning, and phase space transport, with particular attention payed to the role of a vanishing frequency in the limit approaching the intersection of the partially destroyed separatrices. The class of flows under consideration includes flows of basic physical relevance, such as those describing scattering phenomena. The analysis is illustrated in the context of a detailed study of a 3-degree-of-freedom scattering problem.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    V. I. Arnold,Geometric Methods in the Theory of Ordinary Differential Equations. Springer-Verlag, Berlin, 1978.

  2. [2]

    D. Beigie, A. Leonard, and S. Wiggins, A global study of enhanced stretching and diffusion in chaotic tangles,Phys. Fluids A 3 (1991) 1039–1050.

  3. [3]

    D. Beigie, A. Leonard, and S. Wiggins, Chaotic transport in the homoclinic and heteroclinic tangle regions of quasiperiodically forced two-dimensional dynamical systems,Nonlinearity 4 (1991) 775–819.

  4. [4]

    D. Beigie, A. Leonard, and S. Wiggins, The dynamics associated with the chaotic tangles of two-dimensional quasiperiodic vector fields: Theory and applications, inNonlinear Phenomena in Atmospheric and Oceanic Sciences, IMA Volumes in Mathematics and Its Applications, vol. 40, G. F. Carnevale and R. T. Pierrehumbert, eds. Springer-Verlag, New York, 1992, 47–138.

  5. [5]

    D. Beigie and S. Wiggins, Dynamics associated with a quasiperiodically forced Morse oscillator: Application to molecular dissociation,Phys. Rev. A 45 (1992) 4803–4827.

  6. [6]

    D. Beigie, A. Leonard, and S. Wiggins, Statistical relaxation under nonturbulent chaotic flows: Non-Gaussian high-stretch tails of finite-time Lyapunov exponent distributions,Phys. Rev. Lett. 70 (1993) 275–278.

  7. [7]

    D. Beigie, A. Leonard, and S. Wiggins, Invariant manifold templates for chaotic advection.Chaos Solitons Fractals (special issue; Chaos applied to fluid mixing; guest editor Hassan Aref) 4 (1994) 749–868.

  8. [8]

    D. Beigie, Codimension-one partitioning and phase space transport in multi-degree-of-freedom Hamiltonian systems with non-toroidal invariant manifold intersections.Chaos Solitons Fractals (special issue; Decidability and predictability in the theory of dynamical systems; guest editor Mario Rasetti) 5 (1995) 177–211.

  9. [9]

    D. Beigie, Multiple separatrix crossing in multi-degree-of-freedom Hamiltonian flows: Global geometry and phase space transport associated with multiple partial barriers and turnstiles, Cornell Theory Center Technical Report CTC94TR199 (1994).

  10. [10]

    D. Bensimon and L. P. Kadanoff, Extended chaos and disappearance of KAM trajectories,Physica D 13 (1984) 82–89.

  11. [11]

    R. Camassa and S. Wiggins, Chaotic advection in a Rayleigh-Bénard flow,Phys. Rev. A 43 (1991) 774–797.

  12. [12]

    M. J. Davis and S. K. Gray, Unimolecular reactions and phase space bottlenecks,J. Chem. Phys. 84 (1986) 5389–5411.

  13. [13]

    J. Dereziński, Large time behavior of classical N-body systems,Commun. Math. Phys. 148 (1992) 503–520.

  14. [14]

    R. W. Easton, Trellises formed by stable and unstable manifolds in the plane,Trans. Am. Math. Soc. 244 (1986) 719–732.

  15. [15]

    R. W. Easton, Transport through chaos,Nonlinearity 4 (1991) 583–590.

  16. [16]

    R. W. Easton, J. D. Meiss, and S. Carver, Exit times and transport for symplectic twist maps,Chaos 3 (1993) 153–165.

  17. [17]

    N. Fenichel, Persistence and smoothness of invariant manifolds for flows,Indiana Univ. Math. J. 21 (1971) 193–226.

  18. [18]

    R. E. Gillilan and G. S. Ezra, Transport and turnstiles in multidimensional Hamiltonian mappings for unimolecular fragmentation: Application to van der Waals predissociation,J. Chem. Phys. 94 (1991) 2648–2668.

  19. [19]

    G. M. Graf, Asymptotic completeness for N-body short-range quantum systems: A new proof,Commun. Math. Phys. 132 (1990) 73–101.

  20. [20]

    S. K. Gray, S. A. Rice, and M. J. Davis, Bottlenecks to unimolecular reactions and an alternative form for classical RRKM theory,J. Phys. Chem. 90 (1986) 3470–3482.

  21. [21]

    J. Guckenheimer and P. J. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, Berlin, 1983.

  22. [22]

    P. J. Holmes and J. E. Marsden, Melnikov's method and Arnold diffusion for perturbations of integrable Hamiltonian systems,J. Math. Phys. 23 (1982) 669–675.

  23. [23]

    W. Hunziker, The S-matrix in classical mechanics,Commun. Math. Phys. 8 (1968) 282–299.

  24. [24]

    W. Hunziker, Scattering in classical mechanics, inScattering Theory in Mathematical Physics, J. A. La Vita and J.-P. Marchand, eds. Reidel, Dordrecht, Holland, 1974, 79–96.

  25. [25]

    I. S. Kang and L. G. Leal, Bubble dynamics in time-periodic straining flows,J. Fluid Mech. 218 (1990) 41–69.

  26. [26]

    T. J. Kaper and S. Wiggins, Lobe area in adiabatic Hamiltonian systems,Physica D 51 (1991) 205–212.

  27. [27]

    G. Kovačič, Lobe area via action formalism in a class of Hamiltonian systems,Physica D 51 (1991) 226–233.

  28. [28]

    J. G. Leopold and I. C. Percival, Microwave ionization and excitation of Rydberg atoms,Phys. Rev. Lett. 41 (1978) 944–947.

  29. [29]

    R. S. MacKay, J. D. Meiss, and I. C. Percival, Transport in Hamiltonian systems,Physica D 13 (1984) 55–81.

  30. [30]

    R. S. MacKay, J. D. Meiss, and I. C. Percival, Resonances in area-preserving maps,Physica D 27 (1987) 1–20.

  31. [31]

    R. S. MacKay and J. D. Meiss, Relation between quantum and classical thresholds for multiphoton ionization of excited atoms,Phys. Rev. A 37 (1988) 4702–4706.

  32. [32]

    C. C. Martens, M. J. Davis, and G. S. Ezra, Local frequency analysis of chaotic motion in multidimensional systems: Energy transport and bottlenecks in planar OCS,Chem. Phys. Lett. 142 (1987) 519–528.

  33. [33]

    N. Martin, G. Delgado-Barrio, P. Villarreal, P. Mareca, and S. Miret-Artes, Classical trajectory study of tetraatomic van der Waals molecules: Complex He-I2-Ne,J. Mol. Struct. 142 (1986) 501–504.

  34. [34]

    J. D. Meiss and E. Ott, Markov tree model of transport in area-preserving maps,Physica D 20 (1986) 387–402.

  35. [35]

    J. D. Meiss, Symplectic maps, variational principles, and transport,Rev. Mod. Phys. 64 (1992) 795–848.

  36. [36]

    M. Mijatović and K. Trenčevski, Caustics of classical particle scattering,Physica A 164 (1990) 503–514.

  37. [37]

    R. T. Prosser, On the asymptotic behavior of certain dynamical systems,J. Math. Phys. 13 (1972) 186–196.

  38. [38]

    M. Reed and B. Simon,Methods of Modern Mathematical Physics, III: Scattering Theory. Academic Press, London, 1979.

  39. [39]

    V. Rom-Kedar and S. Wiggins, Transport in two-dimensional maps,Arch. Rational Mech. Anal. 109 (1990) 239–298.

  40. [40]

    V. Rom-Kedar, A. Leonard, and S. Wiggins, An analytical study of transport, mixing and chaos in an unsteady vortical flow,J. Fluid Mech. 214 (1990) 347–394.

  41. [41]

    G. C. Schatz, V. Buch, M. A. Ratner, and R. B. Gerber, Dissociation dynamics of vibrationally excited van der Waals clusters: I2XY→ I2 +X+ Y (X,Y= He,Ne),J. Chem. Phys. 79 (1983) 1808–1822.

  42. [42]

    B. Simon, Wave operators for classical particle scattering,Commun. Math. Phys. 23 (1971) 37–48.

  43. [43]

    L. Spitzer, Jr.,Dynamical Evolution of Globular Clusters. Princeton University Press, Princeton, NJ, 1987.

  44. [44]

    W. Thirring, Classical scattering theory,Acta Phys. Austriaca Suppl. XXIII (1981) 3–28.

  45. [45]

    W. Thirring,A Course in Mathematical Physics 1: Classical Dynamical Systems. Springer-Verlag, New York, 1992.

  46. [46]

    S. Wiggins,Global Bifurcations and Chaos—Analytical Methods. Springer-Verlag, New York, 1988.

  47. [47]

    S. Wiggins, The geometry of transport in phase space I. Transport ink-degree-of-freedom Hamiltonian systems, 2 ≤k < ∞,Physica D 44 (1990) 471–501.

  48. [48]

    S. Wiggins,Chaotic Transport in Dynamical Systems. Springer-Verlag, New York, 1992.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beigie, D. Multiple separatrix crossing in multi-degree-of-freedom Hamiltonian flows. J Nonlinear Sci 5, 57–103 (1995). https://doi.org/10.1007/BF01869100

Download citation

Key words

  • multi-degree-of-freedom Hamiltonian systems
  • separatrix crossing
  • invariant manifolds
  • generalized Melnikov theory
  • phase space geometry
  • phase space transport
  • lobe dynamics