The Journal of Membrane Biology

, Volume 81, Issue 3, pp 171–180

Changes in paracellular and cellular ionic permeabilities of monolayers of MDCK cells infected with influenza or vesicular stomatitis viruses

  • R. López-Vancell
  • G. Beaty
  • E. Stefani
  • E. E. Rodríguez-Boulan
  • M. Cereijido
Articles

Summary

MDCK cells (epithelioid line derived from the kidney of a normal dog) form monolayers which retain the properties of transporting epithelia. In these cells viruses bud asymmetrically: influenza from the apical, and vesicular stomatitis (VSV) from the basolateral membrane (E. Rodríguez-Boulán and D. D. Sabatini,Proc. Natl. Acad. Sci. USA75: 5071–5075, 1978; E. Rodríguez-Boulán and M. Pendergast,Cell20: 45–54, 1980). In the present study, we analyzed whether these viruses affect specific ion-translocating mechanisms located in the plasma membrane. We studied the effect of infection on membrane and transepithelial conductance, passive and active unidirectional fluxes of Na+ and K+, intracellular potentials, cellular content of Na+ and K+, and formation of blisters which, in these preparations, are due to the vectorial transport of fluid. Two main observations are derived from these studies. First, infection with VSV caused an increase in transepithelial electrical conductance, due to the opening of tight junctions, 5 to 6 hr after the start of infection, coincident with the accumulation of envelope protein in the cell surface and with the rise in the curve of virus budding. Infection with influenza, on the other hand, increased the transepithelial conductance only late in the infection (12 to 14 hr) when virus production has already stopped. Second, viruses did affect membrane permeability. Yet, the changes observed may not be ascribed to a perturbation of the specific translocating mechanisms for Na+ and K+ which operate in the same region of the plasma membrane that the viruses use to penetrate and leave MDCK cells. The methods used in the present study are not suitable to decide whether the nonspecific changes in permeability elicited by the viruses occur over the whole cell membrane or are restricted to a given region.

Key Words

cultured epithelia MDCK cells ionic fluxes intracellular potentials viral infection virus production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiton, J.F., Brown, C.D.A., Ogden, P., Simmons, N.L. 1982. K+ transport in “tight” epithelial monolayers of MDCK cells.J. Membrane Biol. 65:99–109Google Scholar
  2. Carrasco, L. 1978. Membrane leakiness after viral infection and a new approach to the development of antiviral agents.Nature (London) 272:694–699Google Scholar
  3. Carrasco, L. 1980. Selective inhibition of translation in transformed cells.FEBS Lett. 110:341–343PubMedGoogle Scholar
  4. Carrasco, L., Smith, A. 1976. Sodium ions and the shut-off of host cell protein synthesis by picornaviruses.Nature (London) 264:807–809Google Scholar
  5. Cereijido, M., Ehrenfeld, J., Fernández-Castelo, S., Meza, I. 1981a. Fluxes, junctions and blisters in cultured monolayers of epitheloid cell (MDCK).Ann. N. Y. Acad. Sci. 372:422–441PubMedGoogle Scholar
  6. Cereijido, M., Ehrenfeld, J., Meza, I., Martínez-Palomo, A. 1980a. Structural and functional membrane polarity in cultured monolayers of MDCK cells.J. Membrane Biol. 52:147–159Google Scholar
  7. Cereijido, M., Herrera, F.C., Flanigan, W.J., Curran, P.F. 1964. The influence of Na concentration on Na transport across frog skin.J. Gen. Physiol. 47:879–893PubMedGoogle Scholar
  8. Cereijido, M., Meza, I., Martínez-Palomo, A. 1981b. Occluding junctions in cultured epithelial monolayers.Am. J. Physiol. 240:C96-C102PubMedGoogle Scholar
  9. Cereijido, M., Robbins, E.S., Dolan, W.J., Rotunno, C.A., Sabatini, D.D. 1978. Polarized monolayers formed by epithelial cells on a permeable and translucent support.J. Cell Biol. 77:853–880PubMedGoogle Scholar
  10. Cereijido, M., Stefani, E., Martínez-Palomo, A. 1980b. Occluding junctions in a cultured transporting epithelium: Structural and functional heterogeneity.J. Membrane Biol. 53:19–32Google Scholar
  11. Damsky, C.H., Sheffield, J.B., Tuszynski, G.P., Warren, L. 1977. Is there a role for actin in virus budding.J. Cell Biol. 75:593–605PubMedGoogle Scholar
  12. Fernández-Puentes, C., Carrasco, L. 1980. Virus infection permeabilizes mammalian cells to protein toxins.Cell 20:769–775PubMedGoogle Scholar
  13. Field, M. 1978. Some speculations on the coupling between sodium and chloride transport processes in mammalian and teleost intestine.In: Membrane Transport Processes. J.F. Hoffman, editor. Vol. 1, pp. 277–292. Raven, New YorkGoogle Scholar
  14. Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8PubMedGoogle Scholar
  15. Fuchs, P., Giberman, E. 1973. Enhancement of potassium influx, in baby hamster kidney cells and chicken erythrocytes, during adsorption of parainfluenza 1 (Sendai) virus.FEBS Lett. 31:127–130PubMedGoogle Scholar
  16. Genty, N., Bussereau, F. 1980. Is cytoskeleton involved in vesicular stomatitis virus reproduction?.J. Virol. 34:777–781PubMedGoogle Scholar
  17. Giuffre, R.M., Tovell, D.R., Kay, C.M., Tyrrell, D.L. 1982. Evidence for an interaction between the membrane protein of a paramyxovirus and actin.J. Virol. 42:963–968PubMedGoogle Scholar
  18. Hatanaka, M., Huebner, R.J., Gilden, R.V. 1969. Alterations in the characteristics of sugar uptake by mouse cells infected by murine sarcoma viruses.J. Natl. Cancer Inst. 43:1091–1096PubMedGoogle Scholar
  19. Imprain, C.C., Foster, K.A., Micklem, K.J., Pasternak, C.A. 1980. Nature of virally mediated changes in membrane permeability to small molecules.Biochem. J. 187:847–860Google Scholar
  20. Isselbacher, K.J. 1972. Increased uptake of amino acids and 2-deoxy-d-glucose by virus. Transformed cells in culture.Proc. Natl. Acad. Sci. USA 69:585–589PubMedGoogle Scholar
  21. Kalckar, H.M., Ullrey, D., Kijomoto, S., Hakomori, S. 1973. Carbohydrate catabolism and the enhancement of uptake of galactose in hamster cells transformed by polyoma virusProc. Natl. Acad. Sci. USA 70:839–843PubMedGoogle Scholar
  22. Klemperer, H.G. 1960. An effect of phloridzin on influenza virus elution and on neuraminidase activity.Virology 12:495–498PubMedGoogle Scholar
  23. Leighton, J., Brada, Z., Estes, L., Justh, G. 1969. Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney.Science 163:472–473PubMedGoogle Scholar
  24. Madin, S.H., Darby, N.B. 1958. As catalogued in: American Type Culture Collection Catalog of Strains. H.D. Hyatt and M.J. Gent, editors. Vol. 2, pp. 574–576. Rockville, Md.Google Scholar
  25. Martínez-Palomo, A., Meza, I., Beaty, G., Cereijido, M. 1980. Experimental modulation of occluding junctions in a cultured transport epithelium.J. Cell Biol. 87:736–745PubMedGoogle Scholar
  26. Matlin, K.S., Reggio, H., Helenius, A., Simons, K. 1981. Infectious entry pathway of influenza virus in a canine kidney cell line.J. Cell Biol. 91:601–613PubMedGoogle Scholar
  27. McRoberts, J.A., Erlinger, S., Rindler, M.J., Saier, M.H. 1982. Furosemide sensitive salt transport in the Madin-Darby canine kidney cell-line: Evidence for cotransport of Na+, K+ and Cl.J. Biol. Chem. 257:2260–2266PubMedGoogle Scholar
  28. Meza, I., Ibarra, G., Sabanero, M., Martínez-Palomo, A., Cereijido, M. 1980. Experimental modulation of occluding junctions in a cultured transporting epithelium.J. Cell Biol. 87:746–754PubMedGoogle Scholar
  29. Misfeldt, D.S., Hamamoto, S.T., Pitelka, D.K. 1976. Transepithelial transport in cell culture.Proc. Natl. Acad. Sci. USA 73:1212–1216PubMedGoogle Scholar
  30. Negreanu, Y., Reinhertz, Z., Kohn, A. 1974). Effects of adsorption of u.v.-inactivated parainfluenza (Sendai) virus on the incorporation of amino acids in animal host cells.J. Gen. Virol. 22:265–270PubMedGoogle Scholar
  31. Okada, Y., Koseki, I., Kim, J., Maeda, Y., Hashimoto, T., Kanno, Y., Matsui, Y. 1975. Modification of cell membranes with viral envelopes during fusion of cells with HVJ (Sendai virus). I. Interaction between cell membranes and virus in the early stage.Exp. Cell Res. 93:368–378PubMedGoogle Scholar
  32. Pasternak, C.A., Micklem, K.J. 1973. Permeability changes during cell fusion.J. Membrane Biol. 14:293–303Google Scholar
  33. Pasternak, C.A., Micklem, J.J. 1974a. The biochemistry of virus-induced cell fusion. Changes in membrane integrity.Biochem. J. 140:405–411PubMedGoogle Scholar
  34. Pasternak, C.A., Micklem, K.J. 1974b. Virally mediated membrane changes: Inverse effects on transport and diffusion.Biochem. J. 144:593–595PubMedGoogle Scholar
  35. Rindler, M.J., Chuman, L.M., Shaffer, L., Saier, M.H. 1979a. Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK).J. Cell Biol. 81:635–648PubMedGoogle Scholar
  36. Rindler, M.J., McRoberts, J.A., Saier, M.H. 1982. (Na+, K+)-co-transport in the Madin-Darby canine kidney cell line. Kinetic characterization of the interaction between Na+ and K+.J. Biol. Chem. 257:2254–2259PubMedGoogle Scholar
  37. Rindler, M.J., Taub, M., Saier, M.H., Jr. 1979b. Uptake of22Na+ by cultured dog kidney cells (MDCK).J. Biol. Chem. 254:11431–11439PubMedGoogle Scholar
  38. Rodríguez-Boulán, E. 1983. Polarized assembly of enveloped viruses from cultured epithelial cells.In: Methods in Enzymology. S. Fleischer and B. Fleischer, editors. Vol. 98. Academic, New York (in press)Google Scholar
  39. Rodríguez-Boulán, E., Pendergast, M. 1980. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells.Cell 20:45–54PubMedGoogle Scholar
  40. Rodríguez-Boulán, E., Sabatini, D.D. 1978. Asymmetric budding of viruses in epithelial monolayers: A model system for study of epithelial polarity.Proc. Natl. Acad. Sci. USA 75:5071–5075PubMedGoogle Scholar
  41. Simmons, N.L. 1981. Ion transport in “tight” epithelial monolayers of MDCK cells.J. Membrane Biol. 59:105–114Google Scholar
  42. Stefani, E., Cereijido, M. 1983. Electrical properties of cultured epithelioid cells (MDCK).J. Membrane Biol. 73:177–184Google Scholar
  43. Venuta, S., Rubin, H. 1973. Sugar transport in normal and Rous sarcoma virus-transformed chick-embryo fibroblasts.Proc. Natl. Acad. Sci. USA 70:653–657PubMedGoogle Scholar
  44. Wang, E., Wolf, B.A., Lamb, R.A., Choppin, P.W., Goldbert, A.R. 1976. The presence of actin in enveloped viruses.In: Cell Motility. R. Goodman, T. Pollard and J. Rosenbaum, editors. Vol. 3, p. 589. Cold Spring Harbor Conferences on Cell Proliferation.Google Scholar
  45. Weber, M.J. 1973. Hexose transport in normal and in Rous sarcoma virus-transformed cells.J. Biol. Chem. 218:2978–2983Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • R. López-Vancell
    • 1
  • G. Beaty
    • 1
  • E. Stefani
    • 1
  • E. E. Rodríguez-Boulan
    • 2
  • M. Cereijido
    • 1
  1. 1.Department of PhysiologyCentro de Investigación y de Estudios AvanzadosMéxicoMéxico
  2. 2.Department of PathologyState University of New York, Downstate Medical CenterNew York
  3. 3.Depto. de Ciencias de la SaludUniversidad Nacional Autónoma MetropolitanaIztapalapaMexico

Personalised recommendations