The Journal of Membrane Biology

, Volume 83, Issue 3, pp 207–215 | Cite as

Renal cortical brush-border and basolateral membranes: Cholesterol and phospholipid Composition and relative turnover

  • Bruce A. Molitoris
  • Francis R. Simon


A new procedure for the rapid isolation of renal cortical brush-border and basolateral membranes from the same homogenate is described. Brush-border membranes isolated using Mg2+-EGTA precipitation were enriched 18-fold for leucine aminopeptidase and had a recovery of 32.5%. Basolateral membrane fractions were isolated using a discontinuous sucrose gradient and showed an enrichment of 10.7-fold and recovery of 12.8% using (Na+, K+)-ATPase as a marker enzyme. Lipid analysis using two-dimensional TLC separation of phospholipids and gas liquid chromatography for cholesterol showed marked differences in the lipid composition of the brush-border and basolateral membranes. The brush-border membrane had increased sphingomyelin, phosphatidylserine, ethanolamine plasmalogens, and an increased cholesterol-to-phospholipid and sphingomyelin-to-phosphatidylcholine ratio compared to the basolateral membrane. The relative turnover of total membrane and individual phospholipid species using a double isotope ratio method was carried out. Phospholipids were labeled with either phosphorus 32 and 33 or acetate (3H, 1-14C). The relative turnover of phospholipid species and cholesterol differed strikingly. Phosphatidylcholine showed a high turnover, phosphatidylethanolamine and phosphatidylinositol had intermediate values and sphingomyelin, phosphatidylserine and cholesterol had low relative turnover rates. The order of phospholipid class relative turnover was independent of the labeled precursor used. The brush-border membrane had a significantly reduced relative turnover rate for total membrane phospholipids, sphingomyelin and cholesterol compared to the basolateral membrane. These data show marked differences in the lipid composition and relative turnover rates of the phospholipid species of the brush-border and basolateral membranes. They provide a biochemical basis for the recently reported differences in brush-border and basolateral membrane fluidity and suggest independent cellular regulation of brush-border and basolateral membrane lipids.

Key Words

brush-border membranes basolateral membranes phospholipids cholesterol turnover 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames, B.N., Dubin, D.T. 1960. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid.J. Biol. Chem. 235:769–775PubMedGoogle Scholar
  2. 2.
    Arias, I.M., Doyle, D., Schimke, R.T. 1969. Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver.J. Biol. Chem. 244:3303–3315PubMedGoogle Scholar
  3. 3.
    Barac-Nieto, M., Murer, H., Kinne, R. 1981. Asymmetry in the transport of lactate by basolateral and brush border membranes of rat kidney cortex.Pfluegers Arch. 392:366–371CrossRefGoogle Scholar
  4. 4.
    Baron, J., Tephyl, T.R. 1961. Effect of 3-amino-1,2,4-traizole on the stimulation of hepatic microsomal heme synthesis and induction of hepatic microsomal oxidases produced by phenobarbital.Mol. Pharmacol. 5:10–20Google Scholar
  5. 5.
    Biber, J., Stieger, B., Hasse, W., Murer, H. 1981. A high yield preparation for rat kidney brush border membranes.Biochim. Biophys. Acta 647:169–176PubMedGoogle Scholar
  6. 6.
    Blank, M.L., Wyklee, R.L., Snyder, F. 1973. The retention of arachidonic acid in ethanolamine plasmalogens of rat testes during essential fatty acid deficiency.Biochim. Biophys. Acta 316:28–34PubMedGoogle Scholar
  7. 7.
    Bligh, E.G., Dyer, W.J. 1969. A rapid method of total lipid extraction and purification.Can. J. Biochem. Physiol. 37:911–917Google Scholar
  8. 8.
    Bode, F., Baumann, K., Kinne, R. 1976. Analysis of the pinocytic process in rat kidney. II. Biochemical composition of pinocytic vesicles compared to brush border microvilli, lysosomes and basolateral plasma membrane.Biochim. Biophys. Acta 433:294–310Google Scholar
  9. 9.
    Bode, F., Pockrandt-Hemstedt, H., Baumann, K., Kinne, R. 1974. Analysis of the pinocytic process in rat kidney. I. Isolation of pinocytic vesicles from rat kidney cortex.J. Cell Biol. 63:998–1008CrossRefPubMedGoogle Scholar
  10. 10.
    Boumendil-Podevin, E.F., Podevin, R.A. 1983. Isolation of basolateral and brush border membranes from the rabbit kidney cortex.Biochim. Biophys. Acta 735:86–94PubMedGoogle Scholar
  11. 11.
    Brasitus, T.A., Schachter, D. 1980. Lipid dynamics and lipid-protein interactions in rat enterocyte basolateral and microvillus membranes,Biochemistry 19:2763–2769CrossRefPubMedGoogle Scholar
  12. 12.
    Chapelle, S., Gilles-Baillien, M. 1983. Phospholipids and cholesterol in brush border and basolateral membranes from rat intestinal mucosa.Biochim. Biophys. Acta 753:269–271PubMedGoogle Scholar
  13. 13.
    Cooper, R.A. 1977. Abnormalities of cell-membrane fluidity in the pathogenesis of disease.N. Engl. J. Med. 297:371–377PubMedGoogle Scholar
  14. 14.
    Davis, R.A., Kem, F., Showalter, R., Sutherland, E., Sinensky, M., Simon, F.R. 1978. Alterations of hepatic (Na+, K+)-ATPase and bile flow by estrogen: Effects on liver surface membrane lipid structure and function.Proc. Natl. Acad. Sci. USA 75:4130–4134PubMedGoogle Scholar
  15. 15.
    Del Castillo, J.R., Robinson, J.W.L. 1982. The simultaneous preparation of basolateral and brush border membrane vesicels from guinea-pig intestinal epithelium, and the determination of the orientation of the basolateral vesicles.Biochim. Biophys. Acta 688:45–56PubMedGoogle Scholar
  16. 16.
    Demediuk, P., Cowan, D.L., Moscatelli, E.A. 1983. Effects of plasmenylethanolamine on the dynamic properties of the hydrocarbon region of mixed phosphatidylcholine-phosphatidylethanolamine aqueous dispersions.Biochim. Biophys. Acta 730:263–270PubMedGoogle Scholar
  17. 17.
    Esko, J.D., Raetz, C.R.H. 1980. Mutants of Chinese hamster ovary cells with altered membrane phospholipid composition.J. Biol. Chem. 255:4474–4480PubMedGoogle Scholar
  18. 18.
    Farquhar, M.G. 1983. Multiple pathways of exocytosis, endocytosis, and membrane recycling: Validation of a Golgi route.Fed. Proc. 42:2407–2412PubMedGoogle Scholar
  19. 19.
    Frömter, E. 1979. Solute transport across epithelia: What can we learn from micropuncture studies on kidney tubules?J. Physiol. (London) 288:1–31Google Scholar
  20. 20.
    Hasse, W., Schafer, A., Murer, H., Kinne, R. 1978. Studies on the orientation of brush border membrane vesicles.Biochem. J. 172:57–62PubMedGoogle Scholar
  21. 21.
    Hauser, H., Howell, K., Dawson, R.M.C., Bowyer, D.E. 1980. Rabbit small intestinal brush border membrane preparation and lipid composition.Biochim. Biophys. Acta 602:567–577PubMedGoogle Scholar
  22. 22.
    Ives, H.E., Yee, J., Warnock, D.G. 1983. Asymmetric distribution of the Na+/H+ antiporter in the renal proximal tubule epithelial cell.J. Biol. Chem. 258:13513–13516PubMedGoogle Scholar
  23. 23.
    Lee, T.-C., Stephens, N., Moehl, A., Snyder, F. 1973. Turnover of rat liver plasma membrane phospholipids. Comparison with microsomal membranes.Biochim. Biophys. Acta 291:86–92PubMedGoogle Scholar
  24. 24.
    LeGrimellec, C., Carriere, S., Cardinal, J., Giocondi, M.-C. 1983. Fluidity of brush border and basolateral membranes from human kidney cortex.Am. J. Physiol. 14:F227-F231Google Scholar
  25. 25.
    LeGrimellec, C., Giocondi, M.-C., Carriere, B., Carriere, S., Cardinal, J. 1982. Membrane fluidity and enzyme activities in brush border and basolateral membranes of the dog kidney.Am. J. Physiol. 242:F246-F253PubMedGoogle Scholar
  26. 26.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275PubMedGoogle Scholar
  27. 27.
    Mamelok, R.D., Groth, D.F., Prusiner, S.B. 1980. Separation of membrane-bound δ-glutamyl transpeptidase from brush border transport and enzyme activities.Biochemistry 19:2367–2373CrossRefPubMedGoogle Scholar
  28. 28.
    Roman, L.M., Hubbard, A.L. 1983. A domain-specific marker for the hepatocyte plasma membrane: Localization of leucine aminopeptidase to the bile canalicular domain.J. Cell Biol. 96:1548–1558CrossRefPubMedGoogle Scholar
  29. 29.
    Sacktor, B., Rosenbloom, I.L., Liang, C.T., Cheng, L. 1981. Sodium gradient and sodium plus potassium gradientdependentl-glutamate uptake in renal basolateral membrane vesicles.J. Membrane Biol. 60:63–71Google Scholar
  30. 30.
    Scalera, V., Storelli, C., Storelli-Joss, C., Hasse, W., Murer, H. 1980. A simple and fast method for the isolation of basolateral plasma membranes from rat small-intestinal epithelial cells.Biochem. J. 186:177–181PubMedGoogle Scholar
  31. 31.
    Schwertz, D.W., Kreisberg, J.I., Venkatachalam, M.A. 1983. Characterization of rat kidney proximal tubule brush border membrane associated phosphatidyl inositol phosphodiesterase.Arch. Biochem. Biophys. 224:555–567CrossRefPubMedGoogle Scholar
  32. 32.
    Shinitsky, M., Henkart, P. 1979. Fluidity of cell membranes—Current concepts and trends.Int. Rev. Cytol. 60:121–147PubMedGoogle Scholar
  33. 33.
    Simon, F.R., Gonzales, M., Sutherland, E. 1980. Reversal of ethinyl estradiol-induced bile secretory failure with Triton WR-1339.J. Clin. Invest. 65:851–860PubMedGoogle Scholar
  34. 34.
    Taylor, Z., Emmanouel, D.S., Katz, A.I. 1982. Insulin binding and degradation by luminal and basolateral tubular membranes from rabbit kidney.J. Clin. Invest. 69:1136–1146PubMedGoogle Scholar
  35. 35.
    Voelker, D.R., Kennedy, E.P. 1982. Cellular and enzymic synthesis of sphingomyelin.Biochemistry 21:2753–2759CrossRefPubMedGoogle Scholar
  36. 36.
    Wattenberg, B.W., Silbert, D.F. 1983. Sterol partitioning among intracellular membranes.J. Biol. Chem. 258:2284–2289PubMedGoogle Scholar
  37. 37.
    Wright, E.M., Harms, V., Mircheff, A.K., Os, C.H. van 1981. Transport properties of intestinal basolateral membranes.Ann. N.Y. Acad. Sci. 372:626–636PubMedGoogle Scholar
  38. 38.
    Yoshimura, N., Kikuchi, T., Sasaki, T., Kitahara, A., Hatamaka, M., Murachi, T. 1983. Two distinct Ca2+ proteases (calpain I and calpain II) purified concurrently by the same method from rat kidney.J. Biol. Chem. 258:8883–8889PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Bruce A. Molitoris
    • 1
  • Francis R. Simon
    • 1
  1. 1.Divisions of Nephrology and Gastroenterology, Department of MedicineUniversity of Colorado School of Medicine, Veterans Administration Medical CenterDenver

Personalised recommendations