Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The electrical potential profile of gallbladder epithelium

  • 30 Accesses

  • 63 Citations

Summary

In this study the relative ionic permeabilities of the cell membranes ofNecturus gallbladder epithelium have been determined by means of simultaneous measurement of transmural and transmucosal membrane potential differences (PD) and by ionic substitution experiments with sodium, potassium and chloride ions. It is shown that the mucosal membrane is permeable to sodium and to potassium ions. The baso-lateral membrane PD is only sensitive to potassium ions. In both membranes chloride conductance is negligible or absent. The ratio of the resistances of the mucosal and baso-lateral membranes,R M/RS, increases upon reducing the sodium concentration in the mucosal solution. The same ratio decreases when sodium is replaced by potassium which implies a greater potassium than sodium conductance in the mucosal membrane. The relative permeability of the shunt for potassium, sodium and chloride ions is:P K/P Na/P Cl=1.81:1.00:0.32.

From the results obtained in this study a value for theP K/P Na ratio of the mucosal membrane could be evaluated. This ratio is 2.7. From the same data the magnitude of the electromotive forces generated across the cell membranes could be calculated. The EMF's are −15 mV across the mucosal membrane and −81 mV across the baso-lateral one. Due to the presence of the low resistance shunt the transmucosal membrane PD is −53.2 mV (cell inside negative) and the transmural PD is +2.6 mV (serosal side positive). The change in potential profile brought about by the low resistance shunt favors passive entry of Na ions into the cell across the mucosal membrane. Calculations show that this passive Na influx is maximally 64% of the net Na flux estimated from fluid transport measurements. The C1-conductance of the baso-lateral membrane is too small to allow electrogenic coupling of C1 with Na transport across this membrane.

Experiments with rabbit gallbladder epithelium indicate that the membrane properties in this tissue are qualitatively similar to those ofNecturus gallbladder epithelium.

This is a preview of subscription content, log in to check access.

References

  1. Anagnostopoulos, T. 1973. Biionic potentials in the proximal tubule ofNecturus kidney.J. Physiol. 233:375

  2. Barry, P.H., Diamond, J.M., Wright, E.M. 1971. The mechanism of cation permeation in rabbit gallbladder. Dilution potentials and biionic potentials.J. Membrane Biol. 4:358

  3. Bentley, P.J. 1969. Amiloride: A potent inhibitor of sodium transport across the toad bladder.J. Physiol. 195:317

  4. Biber, T.U.L. 1971. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin.J. Gen. Physiol. 58:131

  5. Biber, T.U.L., Sanders, M.I. 1973. Influence of transepithelial potential difference on the sodium uptake at the outer surface of the isolated frog skin.J. Gen. Physiol. 61:529

  6. Bindslev, N., Tormey, J.McD., Wright, E.M. 1974. The effects of electrical and osmotic gradients on lateral intercellular spaces and membrane conductance in a low resistance epithelium.J. Membrane Biol. 19:357

  7. Boulpaep, E.L. 1971. Electrophysiological properties of the proximal tubule. Importance of cellular and transcellular pathways.In: Electrophysiology of Epithelial Cells. G. Giebisch, editor. p. 91. K. Schattauer Verlag, Stuttgart

  8. Boulpaep, E.L. 1972. Permeability changes of the proximal tubule ofNecturus during saline loading.Amer. J. Physiol. 222:217

  9. Cereijido, M., Curran, P.F. 1965. Intracellular electrical potentials in frog skin.J. Gen. Physiol. 48:543

  10. Dainty, J., House, C.R. 1966. Unstirred layers in frog skin.J. Physiol. 182:66

  11. Duarte, C.G., Chometry, F., Giebisch, G. 1971. Effect of amiloride, ouabain, and furosamide on distal tubular function in the rat.Amer. J. Physiol. 221:632

  12. Dugas, M.C., Frizzell, R.A. 1974. Localization of coupled NaCl transport in rabbit gallbladder.Fed. Proc. 33:370

  13. Frazier, H.S. 1962. Potential profile of toad bladder wall.J. Gen. Physiol. 45:515

  14. Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259

  15. Frömter, E., Diamond, J.M. 1972. Route of passive ion permeation in epithelia.Nature, New Biol. 235:9

  16. Frömter, E., Müller, C.W., Wick, T. 1971. Permeability properties of the proximal tubular epithelium of the rat kidney.In: Electrophysiology of epithelial cells. G. Giebisch, editor. p. 119. K. Schattauer Verlag, Stuttgart

  17. Frömter, E., Rumrich, G., Ullrich, K.J. 1973. Phenomenologic description of Na+, Cl, and HCO 3 absorption from proximal tubules of the rat kidney.Pflügers Arch. 343:189

  18. Gelarden, R.T., Rose, R.C. 1974. Electrical properties and diffusion potentials in the gall-bladder of man, monkey, dog, goose and rabbit.J. Membrane Biol. 19:37

  19. Giebisch, G. 1961. Measurement of electrical potential difference on single nephrons of the perfusedNecturus kidney.J. Gen. Physiol. 44:659

  20. Giebisch, G. 1968. Some electrical properties of single renal tubule cells.J. Gen. Physiol. 51:315s

  21. Giebisch, G., Malnic, G., Klose, R.M., Windhager, E.E. 1966. Effect of ionic substitutions on distal potential differences in rat kidney.Amer. J. Physiol. 211:560

  22. Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37

  23. Hénin, S., Cremaschi, D. 1975. Transcellular ion route in rabbit gallbladder. Electric properties of the epithelial cells.Pflügers Arch. 355:125

  24. Khuri, R., Hajjar, J.J., Agulian, S., Bogharian, K., Kalloghlian, A., Bizri, H. 1972. Intracellular potassium in cells of the proximal tubule ofNecturus maculosus.Pflügers Arch. 338:73

  25. Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298

  26. Lassen, U.V. 1971. Measurement of membrane potential of isolated cells.Proc. Ist Eur. Biophys. Congress, Baden. Vol. III, p. 13

  27. Lindemann, B., Thorns, U. 1967. Fast potential spike of frog skin generated at the outer surface of the epithelium.Science 158:1473

  28. Machen, T.E., Diamond, J.M. 1969. An estimate of the salt concentration in the lateral intercellular spaces of rabbit gallbladder during maximal fluid transport.J. Membrane Biol. 1:194

  29. Mandel, L.J., Curran, P.F. 1972. Chloride flux via a shunt pathway in frog skin: Apparent exchange diffusion.Biochim. Biophys. Acta 282:258

  30. Mandel, L.J., Curran, P.F. 1973. Response of the frog skin to steady-state voltage clamping. II. The active pathway.J. Gen. Physiol. 62:1

  31. Moreno, J.H. 1974. Blockage of cation permeability across the tight junctions of gallbladder and other leaky epithelia.Nature 251:150

  32. Moreno, J.H., Diamond, J.M. 1974. Discrimination of monovalent inorganic cations by “tight” junctions of gallbladder epithelium.J. Membrane Biol. 15:277

  33. Nellans, H.N. 1971. Oxygen consumption and active sodium transport in the toad bladder. Ph. D. Thesis. Yale University, New Haven, Connecticut

  34. Orloff, J., Burg, M. 1971. Kidney.Ann. Rev. Physiol., p. 83

  35. Reuss, L., Finn, A.L. 1975a. Electrical characteristics of epithelial cell membranes inNecturus gallbladder.Biophys. J. 15:11a

  36. Reuss, L., Finn, A.L. 1975b. Circuit analysis inNecturus gallbladder epithelium.Fed. Proc. 34:327

  37. Robinson, R.A., Stokes, R.H. 1970. Electrolyte Solutions. 2nd Edition. Butterworths, London

  38. Rose, R.C., Gelarden, R.T., Nahrwold, D.L. 1973. Electrical properties of isolated human gallbladder.Amer. J. Physiol. 224:1320

  39. Rose, R.C., Schultz, S.G. 1971. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal PD's.J. Gen. Physiol. 57:639

  40. Schultz, S.G. 1972. Electrical potential differences and electromotive forces in epithelial tissues.J. Gen. Physiol. 59:794

  41. Spring, K.R., Paganelli, C.V. 1972. Sodium flux inNecturus proximal tubule under voltage clamp.J. Gen. Physiol. 60:181

  42. Ussing, H.H. 1960. The alkali metal ions in isolated systems and tissues.In: Handbuch der Experimentellen Pharmakologie O. Eichler and A. Farah, editors. p. 1. Springer, Berlin

  43. Van Os, C.H., Slegers, J.F.G. 1971. Correlation between (Na+−K+)-activated ATPase activities and the rate of isotonic fluid transport of gallbladder epithelium.Biochim. Biophys. Acta 241:89

  44. Vieira, F.L., Caplan, S.R., Essig, A. 1972. Energetics of sodium transport in frog skin. II. The effects of electrical potential on oxygen consumption.J. Gen. Physiol. 59:77

  45. Whittembury, G. 1964. Electrical potential profile of the toad skin epithelium.J. Gen. Physiol. 47:795

  46. Whittembury, G., Sugino, N., Solomon, A.K. 1961. Ionic permeability and electrical potential differences inNecturus kidney cells.J. Gen. Physiol. 44:689

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Os, C.H., Slegers, J.F.G. The electrical potential profile of gallbladder epithelium. J. Membrain Biol. 24, 341–363 (1975). https://doi.org/10.1007/BF01868631

Download citation

Keywords

  • Potential Profile
  • Mucosal Membrane
  • Chloride Conductance
  • Serosal Side
  • Sodium Conductance