The Journal of Membrane Biology

, Volume 66, Issue 1, pp 213–225 | Cite as

Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles

  • Bruce R. Stevens
  • Helen J. Ross
  • Ernest M. Wright
Article

Summary

Amino acids enter rabbit jejunal brush border membrane vesicles via three major transport systems: (1) simple passive diffusion; (2) Na-independent carriers; and (3) Na-dependent carriers. The passive permeability sequence of amino acids is very similar to that observed in other studies involving natural and artificial membranes. Based on uptake kinetics and cross-inhibition profiles, at least two Na-independent and three Na-dependent carrier-mediated pathways exist. One Na-independent pathway, similar to the classical L system, favors neutral amino acids, while the other pathway favors dibasic amino acids such as lysine. One Na-dependent pathway primarily serves neutrall-amino acids including 2-amino-2-norbornanecarboxylic acid hemihydrate (BCH), but not β-alanine or α-methylaminoisobutyric acid (MeAIB). Another Na-dependent route favors phenylalanine and methionine, while the third pathway is selective for imino acids and MeAIB. Li is unable to substitute for Na in these systems. Cross-inhibition profiles indicated that none of the Na-dependent systems conform to classical A or ACS paradigms. Other notable features of jejunal brush border vesicles include (1) no β-alanine carrier, and (2) no major proline/glycine interactions.

Key words

amino acid transport small intestinal transport membrane vesicles brush border transport alanine transport phenylalanine transport proline transport 

References

  1. Akedo, H., Christensen, H.N. 1962. Nature of insulin action on amino acid uptake by the isolated diaphragm.J. Biol. Chem. 237:118–122PubMedGoogle Scholar
  2. Christensen, H.N. 1964. Relations in the transport of β-alanine and the α-amino acids in the Ehrlich cell.J. Biol. Chem. 239:3584–3589PubMedGoogle Scholar
  3. Christensen, H.N. 1969. Some special kinetic problems of transport.Adv. Enzymol. 32:1–20PubMedGoogle Scholar
  4. Christensen, H.N. 1975. Biological Transport. W.A. Benjamin, Inc., Reading, Mass.Google Scholar
  5. Christensen, H.N. 1979. Exploiting amino acid structure to learn about membrane transport.Adv. Enzymol. 49:41–101PubMedGoogle Scholar
  6. Christensen, H.N., Antonioli, J.A. 1969. Cationic amino acid transport in the rabbit reticulocyte. Na+-dependent inhibition of Na+-independent transport.J. Biol. Chem. 244:1497–1504PubMedGoogle Scholar
  7. Christensen, H.N., Handlogten, M.E., Lam, I., Tager, H.S., Zand, R. 1969. A bicyclic amino acid to improve discriminations among transport systems.J. Biol. Chem. 244:1510–1520PubMedGoogle Scholar
  8. Christensen, H.N., Liang, M. 1966. Transport of diamino acids into the Ehrlich cell.J. Biol. Chem. 214:5542–5551Google Scholar
  9. Christensen, H.N., Liang, M., Archer, E.G. 1967. A distinct Na+-requiring transport system for alanine, serine, cystine, and similar amino acids.J. Biol. Chem. 242:5237–5246PubMedGoogle Scholar
  10. Christensen, H.N., Oxender, D.L., Liang, M., Vatz, K.A. 1965. The use of N-methylation to direct the route of mediated transport of amino acids.J. Biol. Chem. 240:3609–3616PubMedGoogle Scholar
  11. Crane, R.K. 1960. Intestinal absorption of sugars.Physiol. Rev. 40:789–825PubMedGoogle Scholar
  12. Crane, R.K. 1962. Hypothesis of mechanisms of intestinal active transport of sugars.Fed. Proc. 21:891–895PubMedGoogle Scholar
  13. Diamond, J.M., Wright, E.M. 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Annu. Rev. Physiol. 31:581–646PubMedGoogle Scholar
  14. Hagihira, H., Wilson, T.H., Lin, E.C.C. 1962. Intestinal transport of certain N-substituted amino acids.Am. J. Physiol. 203:637–640PubMedGoogle Scholar
  15. Hajjar, J.J., Curran, P.F. 1970. Characteristics of the amino acid transport system in the mucosal border of rabbit ileum.J. Gen. Physiol. 56:637–691Google Scholar
  16. Jacquez, J.A., Sherman, J.H., Terris, J. 1970. Temperature dependence of amino acid transport in Ehrlich ascites cells: With results which bear on the A-L distinction.Biochim. Biophys. Acta 203:150–166PubMedGoogle Scholar
  17. Kessler, M., Acuto, O., Storelli, C., Murer, H., Muller, M., Semenza, G. 1978. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties ofd-glucose and choline transport systems.Biochim. Biophys. Acta 506:136–154PubMedGoogle Scholar
  18. Kilberg, M.S., Christensen, H.N., Handlogten, M.E. 1979. Cysteine as a system-specific substrate for transport system ASC in rat hepatocytes.Biochem. Biophys. Res. Commun. 88:744–751PubMedGoogle Scholar
  19. Klein, R.A., Moore, M.J., Smith, M.W. 1971. Selective diffusion of neutral amino acids across lipid bilayers.Biochim. Biophys. Acta 233:420–433PubMedGoogle Scholar
  20. Lever, J.E. 1980. The use of membrane vesicles in transport studies.CRC Crit. Rev. Biochem. 7:187–246PubMedGoogle Scholar
  21. Lin, E.C.C., Hagihira, H., Wilson, T.H. 1962. Specificity of the transport system for neutral amino acids in the hamster intestine.Am. J. Physiol. 202:919–925PubMedGoogle Scholar
  22. McClellan, W.M., Schafer, J.A. 1973. Transport of amino-acid analog, 2-aminobicyclo(2,2)-heptane-2-carboxylic acid, by Ehrlich ascites tumor cells.Biochim. Biophys. Acta 311:462–475PubMedGoogle Scholar
  23. Mircheff, A.K., Kippen, I., Hirayama, B., Wright, E.M. 1982. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles.J. Membrane Biol. 64:113–122Google Scholar
  24. Mircheff, A.K., Os, C.H. van, Wright, E.M. 1980. Pathways for alanine transport in intestinal basal membrane vesicles.J. Membrane Biol. 52:83–92Google Scholar
  25. Mircheff, A.K., Wright, E.M. 1976. Analytical isolation of plasma membranes of intestinal epithelial cells. Identification of Na, K-ATPase rich membranes and the distribution of enzyme activities.J. Membrane Biol. 28:309–333Google Scholar
  26. Mitchell, M.A., Levin, R.J. 1981. Amino acid absorption in jejunum and ileum in vivo — a kinetic comparison of function on surface area and regional bases.Experientia 37:265–266PubMedGoogle Scholar
  27. Munck, B.G. 1966. Amino acid transport by the small intestine of the rat. The existance and specificity of the transport mechanisms of imino acids and its relation to the transport of glycine.Biochim. Biophys. Acta 120:97–103PubMedGoogle Scholar
  28. Munck, B.G. 1980. Lysine transport across the small intestine. Stimulating and inhibitory effects of neutral amino acids.J. Membrane Biol. 53:45–53Google Scholar
  29. Munck, B.G. 1981. Intestinal absorption of amino acids.In: Physiology of the Gastrointestinal Tract. L.R. Johnson, J. Christensen, M.L. Grossman, E.D. Jacobson, and S.G. Schultz, editors. pp. 1097–1122, Raven Press, New YorkGoogle Scholar
  30. Munck, B.G., Schultz, S.G. 1969. Lysine transport across isolated rabbit ileum.J. Gen. Physiol. 53:157–182PubMedGoogle Scholar
  31. Newey, H., Smyth, D.H. 1964. The transfer system for neutral amino acids in the rat small intestine.J. Physiol. (London) 170:328–343Google Scholar
  32. Oxender, D.L., Christensen, H.N. 1963. Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell.J. Biol. Chem. 238:3686–3699PubMedGoogle Scholar
  33. Paterson, J.Y.F., Sepulveda, F.V., Smith, M.W. 1979. Two-carrier influx of neutral amino acids into rabbit ileal mucosa.J. Physiol. (London) 292:339–350Google Scholar
  34. Paterson, J.Y.F., Smith, M.W., Sepulveda, F.V. 1980. Animal variation in alanine uptake by rabbit ileal mucosa.Biochim. Biophys. Acta 598:184–188PubMedGoogle Scholar
  35. Preston, R.L., Schaffer, J.F., Curran, P.F. 1974. Structure-affinity relationships of substrates for the neutral amino acid transport system in rabbit ileum.J. Gen. Physiol. 64:443–467PubMedGoogle Scholar
  36. Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B.K., Cerda, J.J., Crane, R.K. 1973. Purification of the human intestinal brush border membrane.Biochim. Biophys. Acta 323:98–112PubMedGoogle Scholar
  37. Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637–718PubMedGoogle Scholar
  38. Schultz, S.G., Markscheid-Kaspi, L. 1971. Competitive interactions betweenl-alanine andl-phenylalanine in rabbit ileum.Biochim. Biophys. Acta 241:857–860PubMedGoogle Scholar
  39. Segal, I.H. 1975. Enzyme Kinetics. John Wiley and Sons, New YorkGoogle Scholar
  40. Sepulveda, F.V., Smith, M.W. 1978. Discrimination between different entry mechanisms for neutral amino acids in rabbit ileal mucosa.J. Physiol. (London) 282:73–90Google Scholar
  41. Silbernagl, S., Foulkes, E.C., Deetjen, P. 1975. Renal handling of amino acids.Rev. Physiol. Biochem. Pharmacol. 74:105–167PubMedGoogle Scholar
  42. Silverman, M., Turner, R.J. 1980. Renal proximal tubule.In: Biomembranes. L.A. Manson, editor. Vol. 10, pp. 1–50. Plenum Press, New YorkGoogle Scholar
  43. Smith, M.W., Sepulveda, F.V. 1979. Sodium dependence of neutral amino acid uptake into rabbit ileum.Biochim. Biophys. Acta 555:374–378PubMedGoogle Scholar
  44. Spears, G., Sneyd, J.G.T., Loten, E.G. 1971. A method for deriving kinetic constants for two enzymes acting on the same substrate.Biochem. J. 125:1149–1151PubMedGoogle Scholar
  45. Spencer, R.P., Bow, T.M., Markulis, M.A. 1962. Amino group requirements for in vitro intestinal transport of amino acids.Am. J. Physiol. 202:171–173PubMedGoogle Scholar
  46. Stevens, B.R. 1980. The role of sulfhydryl groups in alanine transport by lyophilized brush border membrane vesicles. Ph. D. Dissertation. Illinois State University, NormalGoogle Scholar
  47. Stevens, B.R., Wright, S.H., Hirayama, B., Ross, H.J., Gunther, R., Nord, E., Kippen, I., Wright, E.M. 1982. Organic and inorganic solute transport in renal and intestinal membrane vesicles preserved in liquid nitrogen.J. Membrane Biochem. (in press)Google Scholar
  48. Tager, H.S., Christensen, H.N. 1971. Transport of the four isomers of 2-aminonorborane-2-carboxylic acid inEscherichia coli.J. Biol. Chem. 246:7572–7580PubMedGoogle Scholar
  49. Ullrich, K.J., Runrich, G., Kloss, S. 1974. Sodium-dependence of the amino acid transport in the proximal convolution of the rat kidney.Pfluegers. Arch. 351:49–60Google Scholar
  50. Wilson, P.D., Wheeler, K.P. 1973. Permeability of phospholipid vesicles to amino acids.Biochem. Soc. Trans. 1:369–372Google Scholar
  51. Young, J.D., Ellory, J.C. 1977. Red. cell amino acid transport.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors, pp. 301–325. Academic Press, LondonGoogle Scholar

Copyright information

© Springer Verlag New York Inc 1982

Authors and Affiliations

  • Bruce R. Stevens
    • 1
  • Helen J. Ross
    • 1
  • Ernest M. Wright
    • 1
  1. 1.Department of PhysiologyUniversity of California Medical CenterLos Angeles

Personalised recommendations