Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thiocyanate transport across fish intestine (Pleuronectes platessa)

  • 30 Accesses

  • 12 Citations

Summary

When bathed on both sides with identical chloride-containing salines thein vitro preparation of the plaice intestine maintains a negative (serosa to mucosa) short-circuit current of 107±11 μA/cm2, a transepithelial potential difference of 5.5±0.6 mV (serosa negative), and a mean mucosal membrane potential of −45.4±0.6 mV. Under these conditions the intracellular chloride activity is 32mm.

If chloride in the bathing media is partially, or completely substituted by thiocyanate the measured electrical parameters do not change but transepithelial flux determinations show a reduction in chloride fluxes and the presence of a significant thiocyanate flux. The addition of piretanide (10−4 m) reduced the short-circuit current and the mucosa-to-serosa fluxes of chloride and thiocyanate; this inhibition is similar to the effect of piretanide on chloride transport in this tissue.

The results indicate that thiocyanate is transported in this tissue via the piretanide-sensitive “chloride” pathway and are compared with the effects of thiocyanate on other tissues reported in the literature.

This is a preview of subscription content, log in to check access.

References

  1. Akaike, N. 1971. The origin of the basal cell potential in frog corneal epithelium. J. Physiol. (London)219:57–75

  2. Bates, R.G., Staples, B.R., Robinson, R.A. 1970. Ionic hydration and single ion activities in unassociated chlorides at high ionic strength.Anal. Chem. 42:867–871

  3. Bonting, S.L., Amelsvoort, J.M.M. van, Pont, J.J.H.H.M. de. 1978. Is anion sensitive ATPase a plasma membrane located transport system?Acta Physiol. Scand. Special Suppl: 329–340

  4. Cremaschi, D., Hénin, S., Meyer, G. 1979. Stimulation by HCO 3 of Na+ transport in rabbit gallbladder.J. Membrane Biol. 47:145–170

  5. Davenport, H.W. 1940. The inhibition of carbonic anhydrase and of gastric acid secretion by thiocyanate.Am. J. Physiol. 129:505–514

  6. Degnan, K.J., Karnaky, K.J., Zadunaisky, J.A. 1977. Active chloride transport in thein vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells.J. Physiol. (London) 271:155–191

  7. Duffey, M.E., Thompson, S.M., Frizzell, R.A., Schultz, S.G. 1979. Intracellular chloride activities and active chloride absorption in the intestinal epithelium of the winter flounder.J. Membrane Biol. 50:331–341

  8. Durbin, R.P. 1964. Anion requirements for gastric acid secretion.J. Gen. Physiol. 47:735–748

  9. Epstein, F.H., Maetz, J., Renzis, G. de. 1973. Active transport of chloride by the teleost gill: Inhibition by thiocyanate.Am. J. Physiol. 224:1295–1299

  10. Forte, J.G., Davies, R.E. 1964. Relation between hydrogen ion secretion and oxygen uptake by gastric mucosa.Am. J. Physiol. 206:218–222

  11. Frizzell, R.A., Nellans, H.N., Rose, R.C., Markscheid-Kaspi, L., Schultz, S.G. 1973. Intracellular Cl concentrations and influxes across the brush border of rabbit ileum.Am. J. Physiol. 224:328–337

  12. Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37–60

  13. Hogben, C.A.M. 1965. The natural history of the isolated bullfrog gastric mucosa.Fed Proc 24:1353–1359

  14. Maetz, J. 1976. Transport of ions and water across the epithelium of fish gills. In: Lung liquids. Ciba Foundation Symposium.38:133–155

  15. Ramos, M.M.P., Ellory, J.C. 1981. Na and Cl transport across the isolated anterior intestine of the PlaicePleuronectes platessa. J. Exp. Biol. (in press)

  16. Renzis, G. de. 1975. The branchial chloride pump in the goldfishCarassius auratus: Relationship between Cl/HCO 3 and Cl/Cl exchange and the effect of thiocyanate.J. Exp. Biol. 63:587–602

  17. Renzis, G. de, Bornancin, M. 1977. A Cl/HCO 3 ATPase in the gills ofCarassius auratus. Its inhibition by thiocyanate.Biochim. Biophys. Acta 467:192–207

  18. Sachs, G, Collier, R.H., Pacificio, A., Shoemaker, R.L., Zweig, R.A., Hirschowitz, B.I. 1969. Action of thiocyanate on gastric mucosain vitro.Biochim. Biophys. Acta 173:509–517

  19. Schulz, I. 1972. Pancreatic bicarbonate transport.In: Gastric Secretion. G. Sachs, E. Heinz, and K.J. Ullrich, editors pp. 363–379. Academic Press, New York

  20. Walker, J.L. 1971. Ion specific liquid ion exchanger microelectrodes.Anal. Chem. 43:89A-93A

  21. Zadunaisky, J.A. 1978. Transport in eye epithelia: The cornea and crystalline lens.In: Membrane Transport in Biology. G. Geibisch, D.C. Tosteson, and H.H. Ussing, editors Vol. 3, pp. 307–335. Springer Berlin, Heidelberg-New York

  22. Zadunaisky, J.A., Lande, M.A., Hafner, J. 1971. Further studies on chloride transport in the frog cornea.Am. J. Physiol. 221:1832–1836

  23. Zeuthen, T., Hiam, R.C., Silver, I.A. 1973. Microelectrode recording of ion activity in brains.In: Ion Selective Microelectrodes. H.J. Berman and N.C. Hebert, editors. Advances in Experimental Medicine and Biology. Vol. 50, pp. 145–156. Plenum Press, New York

  24. Zeuthen, T., Ramos, M., Ellory, J.C. 1978. Inhibition of active chloride transport by piretanide.Nature (London) 273:678–680

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katz, U., Lau, K.R., Ramos, M.M.P. et al. Thiocyanate transport across fish intestine (Pleuronectes platessa). J. Membrain Biol. 66, 9–14 (1982). https://doi.org/10.1007/BF01868477

Download citation

Key words

  • thiocyanate
  • chloride
  • transport
  • intestine