Advertisement

The Journal of Membrane Biology

, Volume 13, Issue 1, pp 79–88 | Cite as

Some studies on lipid peroxidation in monomolecular and bimolecular lipid films

  • H. Van Zutphen
  • David G. Cornwell
Article

Summary

Hydrogen peroxide generated from dissolved oxygen through the alloxandialuric acid cycle affected both the permeability and the stability of lipid bilayer membranes. The permeability of the artificial membranes varied directly with the hydrogen peroxide concentration. Membrane stability varied inversely with the hydrogen peroxide concentration. Bilayers formed from solutions containing both phospholipid and the antioxidant vitamin E were less permeable and more stable in the presence of hydrogen peroxide than bilayers generated from solutions containing phospholipid alone. Peroxidation of phospholipid monolayers caused first an expansion of the films presumably through the introduction of peroxide groups. Further oxidation of phospholipid monolayers led to contraction of the films presumably through the formation of water-soluble products. The results of the monolayer studies and a consideration of the possible kinetics for the peroxidation reaction sequence have been used to explain the changes in the permeability and the stability of lipid bilayer membranes. Our data suggest that oxidation of lipid in biological membranes may first increase membrane permeability and then decrease membrane stability.

Keywords

Lipid Peroxide Lipid Peroxidation Human Physiology Membrane Permeability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adam, N. K. 1926. The structure of thin films. VIII. Expanded films.Proc. Roy. Soc. (London) A 112:362.Google Scholar
  2. 2.
    Barber, A. A., Bernheim, F. 1967. Lipid peroxidation: Its measurement, occurrence and significance in animal tissues.In: Advances in Gerontological Research. B. L. Strehler, editor. Vol. 2, p. 355. Academic Press Inc., New York, London.Google Scholar
  3. 3.
    Bieri, J. G., Poukka, R. K. H. 1970. In vitro hemolysis as related to rat erythrocyte content of α-tocopherol and polyunsaturated fatty acids.J. Nutr. 100:557.PubMedGoogle Scholar
  4. 4.
    Bunyan, J., Green, J., Edwin, E. E., Diplock, A. T. 1960. Studies on vitamin E. 5. Lipid peroxidation in dialuric acid induced haemolysis of vitamin E deficient erythrocytes.Biochem. J. 77:47.PubMedGoogle Scholar
  5. 5.
    Burke, L. I., Patil, G. S., Panganamala, R. V., Geer, J. C., Cornwell, D. G. 1973. Surface areas of naturally occurring lipid classes and the quantitative microdetermination of lipids.J. Lipid Res. 14:9.PubMedGoogle Scholar
  6. 6.
    Deamer, D. W., Heikkila, R. E., Panganamala, R. V., Cohen, G., Cornwell, D. G. 1971. The alloxan-dialuric acid cycle and the generation of hydrogen peroxide.Physiol. Chem. Phys. 3:426.Google Scholar
  7. 7.
    Fee, J. A., Teitelbaum, H. D. 1972. Evidence that superoxide dismutase plays a role in protecting red blood cells against peroxidative hemolysis.Biochem. Biophys. Res. Commun. 49:150.PubMedGoogle Scholar
  8. 8.
    Gutfreund, H. 1972. Enzymes: Physical Principles. p. 123. Wiley-Interscience, London.Google Scholar
  9. 9.
    Heikkila, R. E., Kwong, C. N., Cornwell, D. G. 1970. Stability of fatty acid monolayers and the relationship between equilibrium spreading pressure, phase transformations, and polymorphic crystal forms.J. Lipid Res. 11:190.PubMedGoogle Scholar
  10. 10.
    Heikkila, R. E., Mezick, J. A., Cornwell, D. G. 1971. Destruction of specific membrane phospholipids during peroxidative hemolysis of vitamin E deficient erythrocytes.Physiol. Chem. Phys. 3:93.Google Scholar
  11. 11.
    Horwitt, M. K., Harvey, C. C., Duncan, G. D., Wilson, W. C. 1956. Effects of limited tocopherol intake in man with relationships to erythrocyte hemolysis and lipid oxidations.Amer. J. Clin. Nutr. 4:408.PubMedGoogle Scholar
  12. 12.
    Hughes, A. H., Rideal, E. K. 1933. On the rate of oxidation of monolayers of unsaturated fatty acids.Proc. Roy. Soc. (London) A 140:253.Google Scholar
  13. 13.
    Mezick, J. A., Settlemire, C. T., Brierley, G. P., Barefield, K. P., Jensen, W. N., Cornwell, D. G. 1971. Erythrocyte membrane interactions with menadione and the mechanism of menadione-induced hemolysis.Biochim. Biophys. Acta 219:361.Google Scholar
  14. 14.
    Packer, L., Deamer, D. W., Heath., R. L. 1967. Regulation and deterioration of structure in membranes.In: Advances in Gerontological Research. B. L. Strehler, editor. Vol. 2, p. 77. Academic Press Inc., New York, London.Google Scholar
  15. 15.
    Pangborn, M. C. 1951. A simplified purification of lecithin.J. Biol. Chem. 188:471.PubMedGoogle Scholar
  16. 16.
    Rose, C. S., György, P. 1950. Hemolysis with alloxan and alloxan-like compounds and the protective action of tocopherol.Blood 5:1062.PubMedGoogle Scholar
  17. 17.
    Rothstein, A. 1970. Sulfhydryl groups in membrane structure and function.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors: Vol. 1, p. 170. Academic Press Inc., New York, London.Google Scholar
  18. 18.
    Tsen, C. C., Collier, H. B. 1960. The protective action of tocopherol against hemolysis of rat erythrocytes by dialuric acid.Canad. J. Biochem. Physiol. 38:957.PubMedGoogle Scholar
  19. 19.
    Van Zutphen, H., Demel, R. A., Norman, A. W., Van Deenen, L. L. M., 1971. The action of polyene antibiotics on lipid bilayer membranes in the presence of several cations and anions.Biochim. Biophys. Acta 241:310.PubMedGoogle Scholar
  20. 20.
    Van Zutphen, H., Merola, A. J., Brierley, G. P., Cornwell, D. G. 1972. The interaction of nonionic detergents with lipid bilayer membranes.Arch. Biochem. Biophys. 152:755.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1973

Authors and Affiliations

  • H. Van Zutphen
    • 1
  • David G. Cornwell
    • 1
  1. 1.Department of Physiological ChemistryOhio State UniversityColumbus

Personalised recommendations