Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evidence for an electrogenic ion transport pump in cells of higher plants

Summary

Cyanide (CN) and dinitrophenol (DNP) rapidly depolarize the cells of oat coleoptiles (Avena sativa L., cultivar Victory) and of pea epicotyls (Pisum sativum L., cultivar Alaska); the effect is reversible. This indicates that electrogenesis is metabolic in origin, and, since active transport is blocked in the presence of CN and DNP, perhaps caused by interference with ATP synthesis, that development of cell potential may be associated with active ion transport. Additional evidence for an electrogenic pump is as follows. (1) Cell electropotentials are higher than can be accounted for by ionic diffusion. (2) Inhibition of potential, respiration, andactive ion transport is nearly maximal, but a potential of −40 to −80 mV remains. This is probably a passive diffusion potential since, under these conditions, a fairly close fit to the Goldman constant-field equation is found in oat coleoptile cells.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Adrian, R. H., Slayman, C. L. 1966. Membrane potential and conductance during transport of sodium, potassium and rubidium in frog muscle.J. Physiol. 184:970.

  2. 2.

    Barr, C. E. 1965. Na and K fluxes inNitella clavata.J. Gen. Physiol. 49:181.

  3. 3.

    Blaedel, W. J., Meloche, V. M. 1963. Elementary Quantitative Analysis: Theory and Practice. Harper and Row, New York.

  4. 4.

    Blinks, L. R. 1935. Protoplasmic potentials inHalicystis. IV. Vacuolar perfusion with artificial sap and sea water.J. Gen. Physiol. 18:409.

  5. 5.

    Cram, W. J. 1968. Compartmentation and exchange of chloride in carrot root tissue.Biochim. Biophys. Acta 163:339.

  6. 6.

    Cummins, J. T., Vaughan, B. E. 1965. Ionic relationships of the bioelectrogenic mechanism in isolated rat stomach.Biochim. Biophys. Acta 94:280.

  7. 7.

    Davis, R. F., Higinbotham, N. 1969. Effects of external cations and respiratory inhibitors on electrical potential of the xylem exudate of excised corn roots.Plant Physiol. 44:1383.

  8. 8.

    Etherton, B. 1963. Relationship of cell transmembrane electropotential to potassium and sodium accumulation ratios in oat and pea seedlings.Plant Physiol 38:581.

  9. 9.

    — Higinbotham, N. 1960. Transmembrane potential measurements of cells of higher plants as related to salt uptake.Science 131:409.

  10. 10.

    Goldman, D. E. 1943. Potential, impedance, and rectification in membranes.J. Gen. Physiol. 27:37.

  11. 11.

    Grundfest, H., Kao, C. Y., Altamirano, M. 1954. Bioelectric effects of ions microinjected into the giant axon ofLoligo.J. Gen. Physiol. 38:245.

  12. 12.

    Gutknecht, J., Dainty, J. 1968. Ionic relations of marine algae.Oceanogr. Mar. Biol. Ann. Rev. 6:163.

  13. 13.

    Higinbotham, N. 1959. The possible role of adenosine triphosphate in rubidium absorption as revealed by the influence of external phosphate, dinitrophenol, and arsenate.Plant Physiol. 34:645.

  14. 14.

    Higinbotham, N. 1964. Electropotentials and ion transport in cells of seed plants. Abstracts of the Xth International Botanical Congress. p. 169. T. and A. Constable, Ltd., Edinburgh.

  15. 15.

    — Etherton, B., Foster, R. J. 1967. Mineral ion centents and cell transmembrane electropotential of pea and oat seedling tissue.Plant Physiol. 42:37.

  16. 16.

    Hope, A. B. 1965. Ionic relations of cells ofChara australis. X. Effects of bicarbonate ions on electrical properties.Aust. J. Biol. Sci. 18:789.

  17. 17.

    Kerkut, G. A., Thomas, R. C. 1965. An electrogenic sodium pump in snail nerve cells.Comp. Biochem. Physiol. 14:167.

  18. 18.

    Kernan, R. P. 1965. Cell K. Butterworth Inc., London.

  19. 19.

    Kitasato, H. 1968. The influence of H+ on the membrane potential and ion fluxes ofNitella.J. Gen. Physiol. 52:60.

  20. 20.

    Marschner, H., Mengel, K. 1966. Der Einfluß von Ca und H Ionen bei unterschiedlichen Stoffwechselbedingungen auf die Membranpermeabilität junger Gerstenwurzeln. A. Pflanzenernahr. Dung., Bodenkunde.112:39–49.

  21. 21.

    Pierce, W. S., Higinbotham, N. 1970. Compartments and fluxes of K+, Na+ and Cl inAvena coleoptile. Plant Physiol. (in press).

  22. 22.

    Pinsker, H., Kandell, E. R. 1969. Synaptic activation of an electrogenic sodium pump.Science 163:931.

  23. 23.

    Poole, R. J. 1966. The influence of the intracellular potential on potassium uptake by beet root tissue.J. Gen. Physiol. 49:551.

  24. 24.

    Robbie, W. A. 1948. Use of cyanide in tissue respiration studies.In: Methods in Medical Research, Vol. 1. p. 307. Yearbook Publishers, Chicago.

  25. 25.

    Robertson, R. H., Wilkins, M. J., Weeks, D. C. 1951. Studies in the metabolism of plant cells. IX. The effects of 2,4-dinitrophenol of salt accumulation and salt respiration.Aust. J. Sci. Res. (Ser. B.)4:248.

  26. 26.

    Sant' Ambrogio, G., Frazier, D. T., Boyarsky, L. L. 1961. Rapid effect of sodium cyanide and dinitrophenol on mammalian nerve.Science 133:876.

  27. 27.

    Slayman, C. L. 1965. Electrical properties of Neurospora crassa. Respiration and the intracellular potential.J. Gen. Physiol. 49:93.

  28. 28.

    Spanswick, R. M. 1970. The effects of bicarbonate ions and external pH on the membrane potential and resistance ofNitella translucens.J. Membrane Biol. 2:59.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Higinbotham, N., Graves, J.S. & Davis, R.F. Evidence for an electrogenic ion transport pump in cells of higher plants. J. Membrain Biol. 3, 210–222 (1970). https://doi.org/10.1007/BF01868016

Download citation

Keywords

  • Cyanide
  • Passive Diffusion
  • Pisum Sativum
  • Ionic Diffusion
  • Cell Potential