The Journal of Membrane Biology

, Volume 7, Issue 1, pp 377–390 | Cite as

Reflection coefficient and permeability of urea in the proximal convolution of the rat kidney

An application of non-equilibrium thermodynamics for a multicomponent system with active transport
  • C. A. Baldamus
  • H. W. Radtke
  • G. Rumrich
  • F. Sauer
  • K. J. Ullrich


The transport theory of Kedem and Katchalsky which was derived for passive transport in a two-compartment system is generalized for a multicomponent system with active transport, so that it can be applied to more complicated biological membranes.

Equations have been derived to describe the transport of urea through the proximal convolution of the rat kidney and the permeability and the reflection coefficient have been determined. The permeability coefficient\((\tilde P_u )\) measured with the microperfusion and stop flow microperfusion methods, was found to be 6.0 and 5.2×10−5 mm2/sec, respectively.

The reflection coefficient (σ) was determined in a stationary state situation and found to be 0.68. Earlier free flow micropuncture results together with theP u andσ u of this study indicate that 50% of the filtered urea is reabsorbed proximally and that approximately half of this amount is reabsorbed by solvent drag and the rest by diffusion.

In the Appendix, a theoretical treatment of nonelectrolyte transport in a multicomponent system with active transport is given.


Urea Human Physiology Stationary State Reflection Coefficient Active Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fitts, D. D. 1962. Nonequilibrium Thermodynamics. A Phenomenological Theory of Irreversible Processes in Fluid Systems. McGraw-Hill Book Co., Inc. New York.Google Scholar
  2. 2.
    Frömter, E., Müller, C. W., Knauf, H. 1969. Fixe negative Wandladungen im proximalen Konvolut der Rattenniere und ihre Beeinflussung durch Calciumionen.In: Aktuelle Probleme des Elektrolyt- und Wasserhaushaltes, Nierenbiopsie. B. Watschinger, editor. p. 61. Verlag der Wiener Medizinischen Akademie, Vienna.Google Scholar
  3. 3.
    Frömter, E., Müller, C. W., Wick, T. 1971 Permeability properties of the proximal tubular epithelium of rat kidney studied with electrophysiological methods.In: Electrophysiology of Epithelial Cells. G. Giebisch, editor. p. 119. F. K. Schattauer Verlag, Stuttgart-New York.Google Scholar
  4. 4.
    Gertz, K. H. 1963. Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere.Pflüg. Arch. Ges. Physiol. 276:336.Google Scholar
  5. 5.
    Goldstein, D. A., Solomon, A. K. 1960. Determination of equivalent pore radius for human red cells by osmotic pressure measurements.J. Gen. Physiol. 44:1.PubMedGoogle Scholar
  6. 6.
    Kedem, O., Katchalsky, A. 1963. Permeability of composite membranes. I. Electric current, volume flow and flow of solute through membranes.Trans. Faraday Soc. 59:1918.Google Scholar
  7. 7.
    Kokko, J., Burg, M. 1969. Reflection coefficient for NaCl in proximal renal tubules.Fed. Proc. 28:589.Google Scholar
  8. 8.
    Lassiter, W. E., Frick, A., Rumrich, G., Ullrich, K. J. 1965. Influence of ionic calcium on the water permeability of proximal and distal tubules in the rat kidney.Pflüg. Arch. Ges. Physiol. 285:90.Google Scholar
  9. 9.
    Leaf, A., Hays, R. M. 1962. Permeability of the isolated toad bladder to solutes and its modification by vasopressin.J. Gen. Physiol. 45:921.PubMedGoogle Scholar
  10. 10.
    Lifson, N., Hakim, A. A. 1966. Simple diffusive-convective model for intestinal absorption of a non-electrolyte (urea).Amer. J. Physiol. 211:1137.PubMedGoogle Scholar
  11. 11.
    Radtke, H. W., Rumrich, G., Klöss, S., Ullrich, K. J. 1971. Influence of luminal diameter and flow velocity on isotonic fluid absorption and36Cl permeability of proximal tubules.Pflüg. Arch. Ges. Physiol. 324:288.Google Scholar
  12. 12.
    Rector, F. C., Jr., Martinez-Maldonado, M., Brunner, F. P., Seldin, D. W. 1966. Evidence for passive reabsorption of NaCl in proximal tubule of rat kidney.J. Clin. Invest. 45:1060.Google Scholar
  13. 13.
    Rumrich, G., Ullrich, K. J. 1968. The minimum requirements for the maintenance of sodium chloride reabsorption in the proximal convolution of the mammalian kidney.J. Physiol. 197:69P.Google Scholar
  14. 14.
    Schlögl, R. 1969. Non-linear transport behaviour in very thin membranes.Quart. Rev. Biophys. 2:305.Google Scholar
  15. 15.
    Smit, J. A. M. 1970. Partition and friction in membranes. Ph. D. Thesis, Delft, The Netherlands.Google Scholar
  16. 16.
    Sonnenberg, H., Deetjen, P., Hampel, W. 1964. Methode zur Durchströmung einzelner Nephronabschnitte.Pflüg. Arch. Ges. Physiol. 278:669.Google Scholar
  17. 17.
    Spitzer, A., Windhager, E. E. 1970. Effect of peritubular oncotic pressure changes on proximal tubular fluid absorption.Amer. J. Physiol. 218:1188.PubMedGoogle Scholar
  18. 18.
    Staverman, A. J. 1952. Non-equilibrium thermodynamics of membrane processes.Trans. Faraday Soc. 48:176.Google Scholar
  19. 19.
    Ullrich, K. J., Frömter, E., Baumann, K. 1969. Micropuncture and Microanalysis in kidney physiology.In: Laboratory Techniques in Membrane Biophysics. H. Passow and R. Stämpfli, editors. p. 106. Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  20. 20.
    Ullrich, K. J., Rumrich, G., Baldamus, C. A. 1970. Mode of urea transport across the mammalian nephron.In: Urea and the Kidney. B. Schmidt-Nielsen and D. W. S. Kerr, editors. p. 175. Excerpta Medica Foundation, Amsterdam.Google Scholar
  21. 21.
    Ullrich, K. J., Schmidt-Nielsen, B., O'Dell, R., Pehling, G., Gottschalk, C. W., Lassiter, W. E., Mylle, M. 1963. Micropuncture study of composition of proximal and distal tubular fluid in rat kidney.Amer. J. Physiol. 204:527.PubMedGoogle Scholar
  22. 22.
    Whittembury, G. 1962. Action of antidiuretic hormone on the equivalent pore radius at both surfaces of the epithelium of isolated toad skin.J. Gen. Physiol. 46:117.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1972

Authors and Affiliations

  • C. A. Baldamus
    • 1
  • H. W. Radtke
    • 1
  • G. Rumrich
    • 1
  • F. Sauer
    • 1
  • K. J. Ullrich
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt/MainGermany

Personalised recommendations