The Journal of Membrane Biology

, Volume 10, Issue 1, pp 279–290 | Cite as

Permeability changes induced by electric impulses in vesicular membranes

  • Eberhard Neumann
  • Kurt Rosenheck


Electric impulses were found to cause transient permeability changes in the membranes of vesicles storing biogenic amines. Release of catecholamines induced by electric fields (of the order of 20 kV/cm and decaying exponentially with a decay time of about 150 μsec) was studied, using the chromaffin granules of bovine adrenomedullary cells as a vesicular model system. Far-UV-absorption spectroscopy was applied to determine the amount of catecholamines released from suspended vesicles. A polarization mechanism is suggested for the induction of short-lived permeability changes caused by electric fields. Such transient changes in permeability may possibly represent a part of the sequence of events leading to stimulated neurohumoral secretion.


Human Physiology Catecholamine Decay Time Biogenic Amine Permeability Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banks, P. 1966. An interaction between chromaffin granules and calcium ions.Biochem. J. 101:18C.PubMedGoogle Scholar
  2. Bloom, F. E., Iversen, L. L., Schmitt, F. O. 1970. Macromolecules in synaptic function.Neurosci. Res. Prog. Bull. 8:325.Google Scholar
  3. Duysens, L. N. M. 1956. The flattening of the absorption spectrum of suspensions, as compared to that of solutions.Biochim. Biophys. Acta 19:1.PubMedGoogle Scholar
  4. Eigen, M., De Maeyer, L. 1963. Relaxation methods.In: Technique of Organic Chemistry. S. L. Friess, E. S. Lewis, and A. Weissberger, editors. Vol. 8, Pt. 2, p. 895. Interscience Publishers, Inc., New York.Google Scholar
  5. Euler, U. S. von. 1970. Adrenergic neurotransmitter functions.Science 173:202.Google Scholar
  6. Helle, K. B., Flatmark, T., Serck-Hanssen, G., Lönning, S. 1971. An improved method for the large-scale isolation of chromaffin granules from bovine adrenal medulla.Biochim. Biophys. Acta 226:1.PubMedGoogle Scholar
  7. Hillarp, N. A. 1958. The release of catecholamines from the amine containing granules of the adrenal medulla.Acta Physiol. Scand. 43:292.PubMedGoogle Scholar
  8. Kornberg, R. D., McConnell, H. M. 1971. Lateral diffusion of phospholipids in a vesicle membrane.Proc. Nat. Acad. Sci. 68:2564.PubMedGoogle Scholar
  9. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265.PubMedGoogle Scholar
  10. Neumann, E., Katchalsky, A. 1972. Long-lived conformation changes induced by electric impulses in biopolymers.Proc. Nat. Acad. Sci. 69:993.PubMedGoogle Scholar
  11. Schwarz, G. 1962. A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution.J. Phys. Chem. 66:2636.Google Scholar
  12. Smith, A. D. 1968. Biochemistry of adrenal chromaffin granules.In: The Interaction of Drugs and Subcellular Components in Animal Cells. P. N. Campbell, editor. p. 239. J. & A. Churchill, Ltd., London.Google Scholar
  13. Stein, W. D. 1967. The Movements of Molecules across Cell Membranes. p. 36. Academic Press Inc., New York.Google Scholar
  14. Trifaró, J. M., Dworkind, J. 1970. A new and simple method for isolation of adrenal chromaffin granules by means of an isotonic density gradient.Analyt. Biochem. 34:403.PubMedGoogle Scholar
  15. Wiersema, P. H., Loeb, A. L., Overbeek, J. T. G. 1966. Calculation of the electrophoretic mobility of a spherical colloid particle.J. Colloid Interface Sci. 22:78.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1972

Authors and Affiliations

  • Eberhard Neumann
    • 1
  • Kurt Rosenheck
    • 1
  1. 1.Polymer DepartmentThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations