Environmental Management

, Volume 10, Issue 4, pp 495–513 | Cite as

Potential ecological consequences of genetically engineered organisms

  • Simon A. Levin
  • Mark A. Harwell


Waste Water Water Management Water Pollution Environmental Management Nature Conservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alexander, M. 1983. Presentation to Subcommittees on Science, Research and Technology and on Investigations and Oversight. Pages 9–16in US Congress, House Committee on Science and Technology, Environmental implications of genetic engineering.Google Scholar
  2. Anderson, P. J., and W. H. Rankin. 1914. Endothia canker of chestnut. Bulletin 347, Agriculture Experiment Station, Cornell University, Ithaca, New York, 90 pp.Google Scholar
  3. Barnes, W. J. 1972. The autecology ofLonicera ×bella. PhD thesis, University of Wisconsin, Madison, Wisconsin.Google Scholar
  4. Beringer, J. E., and P. R. Hirsch. 1984. The role of plasmids in microbial ecology. Pages 63–70in M. J. Klug and C. A. Reddy (eds.), Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC.Google Scholar
  5. Bull, A. T., G. Holt, and M. D. Lilly. 1982. Biotechnology: international trends and perspectives. Organisation for Economic Cooperation and Development, 84 pp.Google Scholar
  6. Burdon, J. J. 1982. The effect of fungal pathogens on plant communities. Pages 99–112in E. I. Newman (ed.), The plant community as a working mechanism. Special publication no. 1 of the British Ecological Society. Blackwell Scientific Publications, Oxford.Google Scholar
  7. Crutzen, J. J. 1974. Estimate of possible variations in total ozone due to natural causes and human activities.Ambio 3:201–210.Google Scholar
  8. Ehrlich, H. L. 1981. Geomicrobiology. Marcel Dekker, New York, 393 pp.Google Scholar
  9. Fenchel, T., and T. H. Blackburn. 1979. Bacteria and mineral cycling. Academic Press, New York, 225 pp.Google Scholar
  10. Fenner, F. 1983. Biological control, as exemplified by smallpox eradication and myxomatosis [the 1983 Florey Lecture].Royal Society of London Series B 218:259–285.Google Scholar
  11. Gould, S. J., and N. Eldredge. 1977. Punctuated equilibria: the tempo mode of evolution reconsidered.Paleobiology 3:115–151.Google Scholar
  12. Gourley, R. S. 1984. Unpublished manuscript.Google Scholar
  13. Holmberg, S. D., M. T. Osterholm, K. A. Singer, and M. L. Cohen. 1984. Drug-resistantSalmonella from animals fed antimicrobials.New England Journal of Medicine 311:617–622.PubMedGoogle Scholar
  14. Johnston, J. B., and S. G. Robinson. 1983. Genetic engineering and the development of new pollution control technologies. Publication no. 83-2, Advanced Environmental Control Technology Research Center, University of Illinois, Urbana, Illinois, 131 pp.Google Scholar
  15. Laurence, J. A., P. R. Hughes, L. H. Weinstein, G. T. Geballe, and W. H. Smith. 1984. Impact of air pollution on plant-pest interactions: implications of current research and strategy for future studies. ERC-020, Ecosystems Research Center, Cornell University, Ithaca, New York, 66 pp.Google Scholar
  16. Legocki, R. P., A. R. J. Eaglesham, and A. A. Szalay. 1983. Stem nodulation inAeschnomene: a model system forBacterium-plant interactions. Pages 210–219in A. Puhler (ed.), Molecular genetics of bacteria—plant interaction. Springer-Verlag, Berlin.Google Scholar
  17. Levin, B. R., and R. E. Lenski. 1983. Coevolution in bacteria and their viruses and plasmids. Pages 99–127in D. J. Futuyma and M. Slatkin (eds.), Coevolution. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  18. Levin, S. A., and K. D. Kimball (eds.). 1984. New perspectives in ecotoxicology.Environmental Management 8:375–442.Google Scholar
  19. Levin, B. R., and F. M. Stewart. 1977. Probability of establishing chimeric plasmids in natural populations of bacteria.Science 196:218–220.PubMedGoogle Scholar
  20. Lewin, R. 1982. Can genes jump between eukaryotic species?Science 217:42–43.PubMedGoogle Scholar
  21. Lewontin, R. 1974. The genetic basis of evolutionary change. Columbia University Press, New York, 346 pp.Google Scholar
  22. Mackenzie, F. T., W. D. Bischoff, and V. Paterson. 1983. Biogeochemical cycles and trends in estimates of inputs of anthropogenic chemical constituents to the environment. ERC Report no. 27, Ecosystems Research Center, Cornell University, Ithaca, New York.Google Scholar
  23. National Research Council (NRC). 1982. Causes and effects of stratospheric ozone reduction: an update. A report prepared by the Committee on Chemistry and Physics of Ozone Depletion and the Committee on Biological Effects of Increased Solar Radiation. National Academy Press, Washington, DC, 339 pp.Google Scholar
  24. Paine, R. T., and T. M. Zaret. 1975. Ecological gambling: The high risks and rewards of species introduction.Journal of the American Medical Association 231:471–473.PubMedGoogle Scholar
  25. Rawinski, T. J. 1982. The ecology and management of purple loosestrife (Lythrum Salicaria L.) in central New York. MS thesis, Cornell University, Ithaca, New York, 88 pp.Google Scholar
  26. Rosswall, T. 1976. The internal nitrogen cycle between microorganisms, vegetation, and soil. Pages 257–167in B. H. Swensson and R. Soderland (eds.), Nitrogen, phosphorus and sulphur: global cycles. SCOPE Report no. 7.Ecological Bulletin (Stockholm) 22.Google Scholar
  27. Rosswall, T. 1981. The biogeochemical nitrogen cycle. Pages 25–49in G. E. Likens (ed.), Some perspectives of the major biogeochemical cycles. SCOPE Report no. 17. John Wiley and Sons, New York.Google Scholar
  28. Schindler, D. W. 1982. Vulnerability of noncalcareous softwater lakes to eutrophication and acidification. ERC-022. Ecosystems Research Center, Cornell University, Ithaca, New York.Google Scholar
  29. Sharples, F. E. 1982. Spread of organisms with novel genotypes: thoughts from an ecological perspective. Oak Ridge National Laboratory, Environmental Sciences Division, Publication no. 2040. ORNL/TM-8473, 47 pp. Also, pp. 157–206in U.S. Congress House Committee on Science and Technology. Environmental Implications of Genetic Engineering. June, 1983. Also,Recombinant DNA Technical Bulletin. June 1983. 6:43–56.Google Scholar
  30. Simberloff, D. 1981. Community effects of introduced species. Pages 53–81in Biotic crises in ecological and evolutionary time. Academic Press, New York.Google Scholar
  31. Sinclair, J. B. 1968. Eradication of citrus canker from Louisiana.Plant Disease Reporter 52:667–670.Google Scholar
  32. Stanley, S. M. 1979. Macroevolution: pattern and process. W. H. Freeman and Company, San Francisco.Google Scholar
  33. Sun, M. 1984. The mystery of Florida citrus canker.Science 226:322–323.Google Scholar
  34. Wetzel, R. G. 1983. Limnology. Saunders, New York, 767 pp.Google Scholar
  35. Zaugg, R. H., and J. R. Swarz. 1981. Assessment of future environmental trends and problems: industrial use of applied genetics and biotechnologies. Teknekron Research, McLean, Virginia, for Office of Research and Development, US Environmental Protection Agency, Washington, DC (under contract 68-02-3192) (EPA-600/8/81-020), 160 pp.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Simon A. Levin
  • Mark A. Harwell

There are no affiliations available

Personalised recommendations