Graphs and Combinatorics

, Volume 4, Issue 1, pp 115–206

Matchings and covers in hypergraphs

  • Zoltán Füredi
Article

Abstract

Almost all combinatorial question can be reformulated as either a matching or a covering problem of a hypergraph. In this paper we survey some of the important results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, H.L., Hanson, D., Liu, A.C.: An extremal problem in graph theory. Q. J. Math. Oxford (2),31, 1–7 (1980)Google Scholar
  2. 2.
    Abbott, H.L., Hanson, D., Liu, A.C.: An extremal problem in hypergraph theory. II. J. Aust. Math. Soc. (A)31, 129–135 (1981)Google Scholar
  3. 3.
    Abbott, H.L., Hanson, D., Sauer, N.: Intersection theorems for systems of sets. J. Comb. Theory (A)12, 381–389 (1972)Google Scholar
  4. 4.
    Abbott, H.L., Katchalski M., Liu, A.C.: An extremal problem in hypergraph theory. In: Discrete Math. Analysis and Comb. Comp. (Conference Proceedings, School of Computer Science, Univ. New Brunswick, Fredericton 1980), pp. 74–82Google Scholar
  5. 5.
    Abbott, H.L., Katchalski M., Liu, A.C.: An extremal problem in graph theory. II. J. Aust. Math. Soc. (A)29, 417–424 (1980)Google Scholar
  6. 6.
    Abbott, H.L., Liu, A.: PropertyB(s) and projective planes. Ars Comb.20, 217–220 (1985)Google Scholar
  7. 7.
    Aigner, M., Erdös P., Grieser, D.: On the representing number of intersecting families. Arch. Math.49, 114–118 (1987)Google Scholar
  8. 8.
    Aharoni, R.: Fractional matchings and covers in infinite hypergraphs, Combinatorica5, 181–184 (1985)Google Scholar
  9. 9.
    Aharoni, R., Erdös, P., Linial, N.: Dual integer linear programs and the relationship between their optima. Proc. 17th ACM Symp. on Theory of Comput. p. 113 and 476–483 (1985)Google Scholar
  10. 10.
    Ajtai, M., Komlós, J., Rödl V., Szemerédi, E.: On coverings of random graphs. Comment. Math. Univ. Carolinae23, 193–198 (1982)Google Scholar
  11. 11.
    Alles, P.: Induced cycles in Kneser graphs.Google Scholar
  12. 12.
    Alon, N.: An extremal problem for sets with applications to graph theory. J. Comb. Theory (A)40, 82–89 (1985)Google Scholar
  13. 13.
    Alon N., Füredi, Z.: On the kernel of intersecting families. Graphs and Combinatorics3, 91–94 (1987)Google Scholar
  14. 14.
    Alon, N., Kalai, G.: A simple proof of the upper bound theorem. Europ. J. Comb.6, 211–214 (1985)Google Scholar
  15. 15.
    Alspach, B., Ollmann, L.T., Reid, K.B.: Mutually disjoint families of 0–1 sequences. Discrete Math.12, 205–209 (1975)Google Scholar
  16. 16.
    Andrásfai, B.: On critical graphs. Théorie des Graphes. Rome ICC, Dunod 9–19 (1967)Google Scholar
  17. 17.
    Andrásfai, B.: Remarks on a paper of Gerencsér and Gyárfás. Ann. Univ. Sci. Eötvös, Budapest13, 103–107 (1970)Google Scholar
  18. 18.
    Bagemihl, F.: A conjecture concerning neighboring tetrahedra. Amer. Math. Mon.63, 328–329 (1956)Google Scholar
  19. 19.
    Balinski, M. L.: Establishing the matching polytope. J. Comb. Theory (B)13, 1–13 (1972)Google Scholar
  20. 20.
    Balinski M.L., Spielberg, K.: Methods for integer programming: algebraic, combinatorial and enumerative. In: Progress in operations research, vol. III, Relationship between operations research and the computer. pp. 195–292. New York: Wiley, 1969Google Scholar
  21. 21.
    Bang, C., Sharp, H., Winkler, P.: On coverings of a finite set: depth and subcovers. Period. Math. Hung.15, 51–60 (1984)Google Scholar
  22. 22.
    Bassalygo L.A., Zinovèv, V.A.: Some simple corrolaries from coding theory for combinatorial problems of packings and coverings (Russian). Mat. Zametki34, 291–295 (1983)Google Scholar
  23. 23.
    Baston, V.J.D.: Some properties of Polyhedra in Euclidean Space. Oxford: Pergamon Press, 1965Google Scholar
  24. 24.
    Beck, J.: On 3-chromatic hypergraphs. Discrete Math.24, 127–137 (1978)Google Scholar
  25. 25.
    Berge, C.: Sur certains hypergraphes generalisant les graphes bipartites. Comb. Th. and its Appl., Proc. Colloq. Math. Soc. J. Bolyai4, 119–133 (1970)Google Scholar
  26. 26.
    Berge, C.: Graphs and Hypergraphs. Amsterdam: North-Holland Publ. 1973Google Scholar
  27. 27.
    Berge, C.: Balanced hypergraphs and some applications to graph theory, In: A Survey of Combinatorial Theory (J.N. Srivastava ed.), pp. 15–23 Amsterdam: North-Holland 1973Google Scholar
  28. 28.
    Berge, C.: Regularisable graphs I and II. Discrete Math.23, 85–89 and 91–95 (1978)Google Scholar
  29. 29.
    Berge, C.: Packing problems and hypergraph theory: a survey. Ann. Discrete Math.4, 3–37 (1979)Google Scholar
  30. 30.
    Berge, C., LasVergnas, M.: Sur un theoreme du type König pour hypergraphes. In: Proc. Int. Conf. on Combin. Math., New York 1970, pp. 32–40Google Scholar
  31. 31.
    Berge, C., Simonovits, M.: The coloring numbers of the direct product of two hypergraphs. In: Hypergraph Seminar (Proc. First Working Seminar, Columbus, Ohio, 1972, C. Berge and D.K. Ray-Chaudhuri eds.) Lecture Notes in Math.411, pp. 21–33. Berlin: Springer-Verlag 1974Google Scholar
  32. 32.
    Bermond, J.-C., Bollobás, B., Diameters of graphs: A survey, in “Proc. 12th S.-E. Conf. on Combin., Graph Th. and Comput.”, Baton Rouge 1981. Congr. Numerantium32, 3–27 (1981)Google Scholar
  33. 33.
    Bermond J.-C., Bond J.: Combinatorial designs and hypergraphs of diameter one. In: Proc. First China-USA Conf. on Graph Theory, 1986Google Scholar
  34. 34.
    Bermond, J.-C., Bond, J., Peyrat, C.: Interconnection network with each node on two buses. Parallel algorithms and architectures (Luminy 1986), pp. 155–167. Amsterdam-New York: North-Holland (1986)Google Scholar
  35. 35.
    Bermond, J.-C., Bond, J., Paoli, M., Peyrat, C.: Graphs and interconnection networks: diameter and vulnerability. In: Surveys in Combinatorics (London Math. Soc. Lecture Notes 82), edited by E.K. Lloyd, pp. 1–30. Cambridge 1983Google Scholar
  36. 36.
    Bermond, J.-C., Bond, J., Saclé, J.F.: Large hypergraphs of diameter 1. In: Graph Theory and Combinatorics (Cambridge, 1983). pp. 19–28. London-New York: Academic Press 1984Google Scholar
  37. 37.
    Bermond, J.-C., Delorme, C., Fahri, G.: Large graphs with given degree and diameter. II. J. Comb. Theory (B)36, 32–48 (1984)Google Scholar
  38. 38.
    Bermond, J.-C., Delorme, C., Fahri, G.: Large graphs with given degree and diameter. III, in Proc. Colloq. Cambridge 1981. Ann. Discrete Math.13, 23–31 (1982)Google Scholar
  39. 39.
    Beutelspacher, A.: Blocking sets and partial spreads in finite projective spaces. Geom. Dedicata9, 425–449 (1980)Google Scholar
  40. 40.
    Bierbrauer, J.: Ramsey numbers for the path with three edges. Europ. J. Comb.7, 205–206 (1986)Google Scholar
  41. 41.
    Bierbrauer, J., Brandis, A.: On generalized Ramsey numbers for trees. Combinatorica5, 95–107 (1985)Google Scholar
  42. 42.
    Bierbrauer J., Gyárfás, A.: On (n, k)-colorings of complete graphs.Google Scholar
  43. 43.
    Blokhuis, A.: More on maximal intersecting families of finite sets. J. Comb. Theory (A)44, 299–303 (1987)Google Scholar
  44. 44.
    Bollobás, B.: On generalized graphs. Acta Math. Acad. Sci. Hung.16, 447–452 (1965)Google Scholar
  45. 45.
    Bollobás, B.: On a conjecture of Erdös, Hajnal and Moon. Amer. Math. Mon.74, 178–179 (1967)Google Scholar
  46. 46.
    Bollobás, B.: Weaklyk-saturated graphs. In: Beiträge zur Graphentheorie (H. Sachs, H.-J. Voss and H. Walter, eds.), pp. 25–31. Leipzig: Teubner 1968Google Scholar
  47. 47.
    Bollobás, B.: Graphs with given diameter and maximal valency and with a minimal number of edges. In: Combinatorial Math. and its Appl. (Proc. Conf. Oxford 1969, D.J. Welsh, ed.), pp. 25–37. London: Academic Press 1971Google Scholar
  48. 48.
    Bollobás, B.: Extremal problems in graph theory. J. Graph Theory1, 117–123 (1977)Google Scholar
  49. 49.
    Bollobás, B.: Disjoint triples in a 3-graph with given maximal degree. Q. J. Math. Oxford (2)28, 81–85 (1977)Google Scholar
  50. 50.
    Bollobás, B.: Extremal Graph Theory. London: Academic Press 1978Google Scholar
  51. 51.
    Bollobás, B.: Combinatorics. Cambridge: Cambridge Univ. Press 1986Google Scholar
  52. 52.
    Bollobás, B., Duchet, P.: Helly families of maximal size. J. Comb. Theory (A)26, 197–200 (1979)Google Scholar
  53. 53.
    Bollobás, B., Duchet, P.: On Helly-families of maximal size. J. Comb. Theory (B)35, 290–296 (1983)Google Scholar
  54. 54.
    Bollobás, B., Eldridge, S.E.: Maximal matchings in graphs with given minimal and maximal degrees. Math. Proc. Cambridge Phil. Soc.79, 221–234 (1976)Google Scholar
  55. 55.
    Bondy, J.A., Murty, U.S.R.: Extremal graphs of diameter 2 with prescribed minimum degree. Studia Sci. Math. Hungar.7, 239–241 (1972)Google Scholar
  56. 56.
    Boros, E., Füredi, Z., Kahn, J.: Maximal intersecting families and affine regular polygons inPG(2,q). J. Comb. Theory (A) (in print)Google Scholar
  57. 57.
    Brace, A., Daykin, D.E., Cover theorems for finite sets I–III. Bull. Austral. Math. Soc.5, 197–202 (1971),6, 19–24 (1972),6, 417–433 (1972)Google Scholar
  58. 58.
    Brouwer, A.E.: On the size of a maximum transversal in a Steiner triple system. Canad. J. Math.33, 1202–1204 (1981)Google Scholar
  59. 59.
    Brouwer A.E., Schrijver, A.: The blocking number of an affine space. J. Comb. Theory (A)24, 251–253 (1978)Google Scholar
  60. 60.
    Bruen, A.: Baer subplanes and blocking sets. Bull. Amer. Math. Soc.76, 342–344 (1970)Google Scholar
  61. 61.
    Bruen, A.: Blocking sets in finite projective planes. SIAM J. Appl. Math.21, 380–392 (1971)Google Scholar
  62. 62.
    Bruen, A., Fisher, J.C.: Blocking sets,k-arcs and nets of order ten. Advances in Math.10, 317–320 (1973)Google Scholar
  63. 63.
    Bruen A.A., de Resmini, M.J.: Blocking sets in affine planes. In: Combinatorics '81 (Rome, 1981), North-Holland Math. Stud. 78, pp. 169–175. Amsterdam-New York: North-Holland 1983Google Scholar
  64. 64.
    Bruen A.A., Rothschild, B.L.: Lower bounds on blocking sets. Pacific J. Math.118, 303–311 (1985)Google Scholar
  65. 65.
    Bruggesser, H., Mani, P.: Shellable decompositions of cells and spheres. Math. Scand.29, 197–205 (1971)Google Scholar
  66. 66.
    Burr, S.A., Grünbaum, B., Sloane, N.J.A.: The orchard problem. Geometriae Dedicata2, 397–424 (1974)Google Scholar
  67. 67.
    Calczynska-Karlowicz, M.: Theorem on families of finite sets. Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys.12, 87–89 (1964)Google Scholar
  68. 68.
    Calderbank, A.R.: Symmetric designs as the solution of an extremal problem in combinatorial set theory. Europ. J. Comb. (to appear)Google Scholar
  69. 69.
    Chung, F.R.K.: Diameters of communication networks. Proc. Symposia in Appl. Math. AMS34, 1–18 (1986)Google Scholar
  70. 70.
    Chung, F.R.K., Füredi, Z., Garey, M.R., Graham, R.L.: On the fractional covering number of hypergraphs. SIAM J. on Discrete Math. 1 (1988) (in print)Google Scholar
  71. 71.
    Chvátal, V.: Edmonds polytopes and hierarchy of combinatorial problems. Discrete Math.4, 305–337 (1973)Google Scholar
  72. 72.
    Chvátal, V., Hanson, D.: Degrees and matchings. J. Comb. Theory (B)20, 128–138 (1976)Google Scholar
  73. 73.
    Colbourn, C.J., Colbourn, M.J.: The chromatic index of cyclic Steiner 2-designs. Internat. J. Math. Sci.5, 823–825 (1982)Google Scholar
  74. 74.
    Collins, K.L., Shor, P.W., Stembridge, J.R.: A lower bound for 0, 1, * tournament codes. Discrete Math.63, 15–19 (1987)Google Scholar
  75. 75.
    Csima, J.: Stochastic functions on hypergraphs. Combinatorial Theory and its Application. In: Proc. Colloq. Math. Soc. J. Bolyai 4. Amsterdam: North-Holland 1970, pp. 247–255Google Scholar
  76. 76.
    Danzer, L., Grünbaum, B., Klee, V.: Helly's theorem and its relatives. In: Proc. Symp. in Pure Math. 7, pp. 101–180. Providence, R.I.: Amer. Math. Soc. 1963Google Scholar
  77. 77.
    Daykin, D.E.: Problem E 2654. Amer. Math. Monthly84, 386 (1977), Minimum subcover of a cover of a finite set (Solution of Problem E 2654). ibid85, 766 (1978)Google Scholar
  78. 78.
    Daykin, D.E., Frankl, P.: Sets of finite sets satisfying union conditions. Mathematika (London)29, 128–134 (1982)Google Scholar
  79. 79.
    Delorme C., Fahri, G.: Large graphs with given degree and diameter. I, IEEE Trans. Comput.33, 857–860 (1984)Google Scholar
  80. 80.
    Deza, M., Frankl, P.: A Helly type theorem for hypersurfaces, J. Comb. Theory (A)45, 27–30 (1987)Google Scholar
  81. 81.
    Dow, S.J., Drake, D.A., Füredi, Z., Larson, J.A.: A lower bound for the cardinality of a maximal family of mutually intersecting sets of equal size. Proc. 16-th S-E Conf., Congressus Numerantium48, 47–48 (1985)Google Scholar
  82. 82.
    Drake, D.A.: Maximal (k + 1)-cliques, that carry maximalk-cliques. In: Finite Geometries (Winnipeg, Manitoba, 1984) Lecture Notes in Pure and Appl. Math. 103, pp. 107–116. New York: Dekker 1985Google Scholar
  83. 83.
    Drake, D.A.: Blocking sets in block designs. J. Comb. Theory (A)40, 459–462 (1985)Google Scholar
  84. 84.
    Drake, D.A.: Embedding maximal cliques of sets in maximal cliques of bigger sets. Discrete Math.58, 229–242 (1986)Google Scholar
  85. 85.
    Drake, D.A., Sane, S.S.: Maximal intersecting families of finite sets andn-uniform Hjelmslev planes. Proc. Amer. Math. Soc.86, 358–362 (1982)Google Scholar
  86. 86.
    Duke, R.A., Erdös, P.: A problem on complements and disjoint edges in a hypergraph. Proc. 11th Southeastern Conf. Combin., Graph Th. and Computing (Boca Raton, Fla., 1980). Congressus Numerantium28, 369–375 (1980)Google Scholar
  87. 87.
    Eckhoff, J.: An upper bound theorem for families of convex sets. Geometriae Dedicata19, 217–227 (1985)Google Scholar
  88. 88.
    Edmonds. J.: Paths, trees, and flowers. Canad. J. Math.17, 449–467 (1965)Google Scholar
  89. 89.
    Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Nat. Bur. Standards Sect. B69B, 125–130 (1965)Google Scholar
  90. 90.
    Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. Ann. Discrete Math.1, 185–204 (1977)Google Scholar
  91. 91.
    Edmonds, J., Pulleyblank, W.: Facets of 1-matching polyhedra. In: Hypergraph Seminar (Proc. First Working Seminar, Columbus, Ohio, 1972, edited by C. Berge, D.K. Ray-Chaudhuri). Lecture Notes in Math. 411, pp. 214–242. Berlin: Springer 1974Google Scholar
  92. 92.
    Ehrenfeucht, A., Mycielski, J.: Interpolation of functions over a measure space and conjectures about memory. J. Approximation Theory9, 218–236 (1973)Google Scholar
  93. 93.
    Erdös, P.: On a combinatorial problem II. Acta Math. Hung.15, 445–447 (1964)Google Scholar
  94. 94.
    Erdös, P.: A problem of independentr-tuples. Ann. Univ. Budapest8, 93–95 (1965)Google Scholar
  95. 95.
    Erdös, P.: Problems and results in combinatorial analysis. In: Theorie Combinatorie (Roma, 1973). Acad. Naz. Lincei, Rome, 1976, vol. II, pp. 3–17Google Scholar
  96. 96.
    Erdös, P.: Problems and results in graph theory and combinatorial analysis. In: Proc. Fifth British Combin. Conf. (1975, Aberdeen), edited by C.St.J.A. Nash-Williams et al. Congressus Numerantium 15. pp. 169–192. Winnipeg: Utilitas Math. 1976Google Scholar
  97. 97.
    Erdös, P.: On the combinatorial problems I would most like to see solved. Combinatorica1, 25–42 (1981)Google Scholar
  98. 98.
    Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of two others. J. Comb. Theory (A)33, 158–166 (1982)Google Scholar
  99. 99.
    Erdös, P., Frankl P., Füredi, Z.: Families of finite sets in which no set is covered by the union ofr others. Israel J. Math.51, 79–89 (1985)Google Scholar
  100. 100.
    Erdös P., Gallai, T.: On the maximal number of vertices representing the edges of a graph. MTA Mat. Kutató Int. Közl. Budapest6, 181–203 (1961)Google Scholar
  101. 101.
    Erdös, P., Graham, R.L.: On partition theorems for finite graphs. In: Infinite and finite sets (Proc. Colloq. Math. Soc. J. Bolyai 10, Keszthely, Hungary, 1973), edited by A. Hajnal, et al. pp. 515–527. Amsterdam: North-Holland 1975Google Scholar
  102. 102.
    Erdös, P., Hajnal, A.: On a property of families of sets. Acta Math. Hung.12, 87–123 (1961)Google Scholar
  103. 103.
    Erdös, P., Hajnal, A.: On chromatic graphs (Hungarian, English summary). Mat. Lapok18, 1–4 (1967)Google Scholar
  104. 104.
    Erdös, P., Hajnal, A., Moon, J.W.: A problem in graph theory. Amer. Math. Monthly71, 1107–1110 (1964)Google Scholar
  105. 105.
    Erdös, P., Hanani, H.: On a limit theorem in combinatorial analysis. Publ. Math. Debrecen10, 10–13 (1963)Google Scholar
  106. 106.
    Erdös, P., Kleitman, D.J.: Extremal problems among subsets of a set. Discrete Math.8, 281–294 (1974) (see also Proc. 2nd Chapel Hill Conf., Univ. North Carolina, August 1970, pp. 146–170)Google Scholar
  107. 107.
    Erdös, P., Ko, C., Rado, R.: Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2)12, 313–320 (1961)Google Scholar
  108. 108.
    Erdös, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. In: Infinite and Finite Sets (Proc. Colloq. Math. Soc. J. Bolyai 10, Keszthely, Hungary, 1973), edited by A. Hajnal et al. pp. 609–627. Amsterdam: North-Holland 1975Google Scholar
  109. 109.
    Erdös, P., Rado, R., Intersection theorems for systems of sets. J. London Math. Soc.35, 85–90 (1960)Google Scholar
  110. 110.
    Erdös, P., Rényi, A.: On a problem in the theory of graphs (in Hungarian). Magyar Tud. Akad. Mat. Kutató Int. Közl.7/A, 623–641 (1963)Google Scholar
  111. 111.
    Erdös, P., Rényi, A., Sós, V. T.: On a problem of graph theory. Studia Sci. Math. Hungar.1, 215–235 (1966)Google Scholar
  112. 112.
    Lo Faro, G.: Partial parallel classes in Steiner systemS(2, 3, 19). J. Inform. Optim. Sci.6, 133–136 (1985)Google Scholar
  113. 113.
    Fort, M.K., Jr., Hedlund, G.A.: Minimal coverings of pairs by triples. Pacific J. Math.8, 709–719 (1958)Google Scholar
  114. 114.
    Frankl, P.: On intersecting families of finite sets, J. Comb. Theory (A)24, 146–161 (1978)Google Scholar
  115. 115.
    Frankl, P.: On intersecting families of finite sets, Bull. Austral. Math. Soc.21, 363–372 (1980)Google Scholar
  116. 116.
    Frankl, P.: An extremal problem for two families of sets. Europ. J. Comb.3, 125–127 (1982)Google Scholar
  117. 117.
    Frankl, P.: Asymptotic solution of a locally Turán problem. Studia Sci. Math. Hungar.19, 253–257 (1987)Google Scholar
  118. 118.
    Frankl, P.: The shifting technique in extremal set theory. Combinatorial Surveys 1987, edited by C. Whitehead, pp. 81–110. Cambridge Univ. Press 1987Google Scholar
  119. 119.
    Frankl, P.: Erdös-Ko-Rado theorem with conditions on the maximal degree. J. Comb. Theory (A)46, 252–263 (1987)Google Scholar
  120. 120.
    Frankl, P., Füredi, Z.: Disjointr-tuples in anr-graph with given maximum degree. Quart. J. Math. Oxford (2)34, 423–426 (1983)Google Scholar
  121. 121.
    Frankl, P., Füredi, Z.: Finite projective spaces and intersecting hypergraphs. Combinatorica6, 335–354 (1986)Google Scholar
  122. 122.
    Frankl, P., Füredi, Z.: Non-trivial intersecting families. J. Comb. Theory (A)41, 150–153 (1986)Google Scholar
  123. 123.
    Frankl, P., Füredi, Z.: Colored packing of sets in combinatorial design theory. Annals of Discrete Math.34, 165–178 (1987)Google Scholar
  124. 124.
    Frankl, P., Pach, J.: On disjointly representable sets. Combinatorica4, 39–45 (1984)Google Scholar
  125. 125.
    Frankl, P., Rödl, V.: Near perfect coverings in graphs and hypergraphs. Europ. J. Comb.6, 317–326 (1985)Google Scholar
  126. 126.
    Frankl, P., Stečkin, B.S.: In: Combinatorial Analysis, Problems and Exercises (in Russian). Problem 6.41. Moscow: Nauka 1982Google Scholar
  127. 127.
    Fulkerson, D.R.: Blocking and anti-blocking pairs of polyhedra. Math. Progr.1, 168–194 (1971)Google Scholar
  128. 128.
    Füredi, Z.: On maximal intersecting families of finite sets. J. Comb. Theory (A)28, 282–289 (1980)Google Scholar
  129. 129.
    Füredi, Z.: Erdös-Ko-Rado type theorems with upper bounds on the maximum degree. In: Algebraic Methods in Graph Theory (Szeged, Hungary, 1978), Proc. Colloq. Math. Soc. J. Bolyai. 25, edited by L. Lovász et al. pp. 177–207. Amsterdam: North-Holland 1981Google Scholar
  130. 130.
    Füredi, Z.: Maximum degree and fractional matchings in uniform hypergraphs. Combinatorica1, 155–162 (1981)Google Scholar
  131. 131.
    Füredi, Z.: An intersection problem with 6 extremes. Acta. Math. Hungar.42, 177–187 (1983)Google Scholar
  132. 132.
    Füredi, Z.: Geometrical solution of an intersection problem for two hypergraphs. Europ. J. Comb.5, 133–136 (1984)Google Scholar
  133. 133.
    Füredi, Z.:t-expansive andt-wise intersecting hypergraphs. Graphs and Combinatorics2, 67–80 (1986)Google Scholar
  134. 134.
    Füredi, Z.: Onr-graphs andr-multihypergraphs with given maximum degree. J. Austral Math. Soc. A (submitted)Google Scholar
  135. 135.
    Füredi, Z.: Covering pairs byq 2 + q + 1 sets. J. Comb. Theory (A) (submitted)Google Scholar
  136. 136.
    Füredi, Z.: Covering the complete graph by partitions. Discrete Math. (submitted)Google Scholar
  137. 137.
    Füredi, Z.: Kahn, J., Seymour, P.: On the fractional matching polytope of hypergraphs. (prepared)Google Scholar
  138. 138.
    Füredi, Z., Palásti, I.: Arrangements of lines with a large number of triangles. Proc. Amer. Math. Soc.92, 561–566 (1984)Google Scholar
  139. 139.
    Füredi, Z., Tuza, Zs.: Hypergraphs without a large star. Discrete Math.55, 317–321 (1985)Google Scholar
  140. 140.
    Gale, D.: Neighborly and cyclic polytopes. In: Proc. Sympos. Pure Math. VII (Seattle, 1961), pp. 225–232. Providence, RI: Amer. Math. Soc. 1963Google Scholar
  141. 141.
    Gallai, T.: Neuer Beweis eines Tutteschen Satzes. MTA Mat. Kut. Int. Közl.8, 135–139 (1963)Google Scholar
  142. 142.
    Gerencsér, L., Gyárfás, A.: On Ramsey-type problems. Ann. Univ. Sci. Eötvös, Budapest10, 167–170 (1967)Google Scholar
  143. 143.
    Gomory, R.: An algorithm for integer solutions of linear programs. In: Recent Advances in Math. Prog., pp. 269–302. New York: McGraw-Hill 1963Google Scholar
  144. 144.
    Graham, R.L.: Private communicationGoogle Scholar
  145. 145.
    Grünbaum, B.: Convex Polytopes. London: Wiley-Interscience 1967Google Scholar
  146. 146.
    Griggs, J.R., Stahl, J., Trotter, W.T., Jr.: A Sperner theorem on unrelated chains of subsets. J. Comb. Theory (A)36, 124–127 (1984)Google Scholar
  147. 147.
    Gyárfás, A. Partition covers and blocking sets in hypergraphs (in Hungarian). MTA SZTAKI Tanulmányok 71. Budapest 1977Google Scholar
  148. 148.
    Gyárfás, A., Lehel, J., Tuza, Zs.: Upper bound on the order ofτ-critical hypergraphs. J. Comb. Theory (B)33, 161–165 (1982)Google Scholar
  149. 149.
    Haemers, W.: Eigenvalue methods. Math. Centre Tracts106, 15–38 (1979)Google Scholar
  150. 150.
    Hajnal, A.: A theorem onk-saturated graphs. Canad. J. Math.17, 720–724 (1965)Google Scholar
  151. 151.
    Hansen, P., Lorea, M.: Le nombre de transversalité du plan affine á 49 sommets. In: Analyse appliquée et informatique, edited by J.-C. Bermond, R. Cori, pp. 201–209. Bordeaux 1975Google Scholar
  152. 152.
    Hanson, D., Toft, B.: On the maximum number of vertices inn-uniform cliques. Ars Combinatoria16A, 205–216 (1983)Google Scholar
  153. 153.
    Halberstam H., Roth, K.F.: Sequences. London: Oxford 1966Google Scholar
  154. 154.
    Hartman, A., Mills W.H., Mullin, R.C.: Covering triples by quadruples, an asymptotic solution. J. Comb. Theory (A)41, 117–138 (1986)Google Scholar
  155. 155.
    Hemmeter, J., Hong, Y.: Sparse matchings in the Johnson GraphJ(n, k) Google Scholar
  156. 156.
    Hilton, A.J.W., Milner, E.C.: Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2)18, 369–384 (1967)Google Scholar
  157. 157.
    Hirschfeld, J.W.P.: Projective Geometry over Finite Fields. Oxford: Clarendon Press 1979Google Scholar
  158. 158.
    Hoffman, A.J.: A generalization of max flow-min cut. Math. Progr.6, 352–359 (1974)Google Scholar
  159. 159.
    Jaeger, F., Payan, C.: Nombre maximal d'arétes d'un hypergraphe critique de rangh. C.R. Acad. Sci. Paris273, 221–223 (1971)Google Scholar
  160. 160.
    Jamison, R.E.: Covering finite fields with cosets of subspaces. J. Comb. Theory (A)22, 253–266 (1977)Google Scholar
  161. 161.
    Jungnickel, D., Leclerc, M.: Blocking sets in (r, λ)-designs. Ars Combinatoria22, 211–219 (1986)Google Scholar
  162. 162.
    Kalai, G.: Intersection patterns of convex sets. Israel J. Math.48, 161–174 (1984)Google Scholar
  163. 163.
    Katona, G.O.H.: Solution of a problem of Ehrenfeucht and Mycielski. J. Comb. Theory (A)17, 265–266 (1974)Google Scholar
  164. 164.
    Katona, G., Szemerédi, E.: On a problem of graph theory. Studia Sci. Math. Hungar.2, 23–28 (1967)Google Scholar
  165. 165.
    Kelly, D., Trotter, W.T., Jr.: Dimension theory for ordered sets. In: Ordered Sets (Banff, Alberta, 1981). NATO Advanced Study Inst. Ser. C 83, pp. 171–211. Dordrecht-Boston: Reidel 1982Google Scholar
  166. 166.
    Kitto, C.: A bound for blocking sets of maximal type in finite projective planes.Google Scholar
  167. 167.
    Kleitman, D. (Peck, G.W.), Paoli, M., Trotter, W.T., Jr., West, D.B.: The maximum number of edges in regular 2K 2-free graphs (manuscript)Google Scholar
  168. 168.
    Kuzyurin, N.N.: One limit theorem about (n, k, l)-coverings. Discrete Math. and its Appl. to Math. Cybernetics, III (Rostock, 1981), Rostock. Math. Kolloq.21, 59–62 (1982)Google Scholar
  169. 169.
    Laskas, R., Sherk, F.A.: Generating sets in finite projective planes. In: Finite Geometries, edited by C. Baker, L.M. Batten (Proc. Conf. Finite Geometries. Winnipeg, 1984 Lecture Notes in Pure and Appl. Math. 103, pp. 183–198. M. Dekker Publ. Co., 1985Google Scholar
  170. 170.
    Lehel, J.:τ-critical hypergraphs and the Helly-property. Ann. Discrete Math.17, 413–418 (1982)Google Scholar
  171. 171.
    Lehel, J.: Multitransversals inτ-critical hypergraphs. In: Finite and Infinite Sets (Proc. Colloq. Math. Soc. J. Bolyai 37, Eger, Hungary, 1981), pp. 567–576. Amsterdam: North-Holland 1984Google Scholar
  172. 172.
    van Lint, J.H.: {0, 1, *} distance problems in combinatorics. In: Surveys in Combinatorics, edited by I. Anderson. London Math Soc. Lecture Notes 103, pp. 113–135. Cambridge Univ. Press 1985Google Scholar
  173. 173.
    Lorentz, G.G.: On a problem in additive number theory. Proc. Amer. Math. Soc.5, 838–841 (1954)Google Scholar
  174. 174.
    Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math.2, 253–267 (1972)Google Scholar
  175. 175.
    Lovász, L.: Minimax theorems for hypergraphs. In: Hypergraph Seminar. Lecture Notes in Math. 411, pp. 111–126. Berlin: Springer 1974Google Scholar
  176. 176.
    Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math.13, 383–390 (1975)Google Scholar
  177. 177.
    Lovász, L.: On minimax theorems of combinatorics (Doctoral thesis, in Hungarian). Mathematikai Lapok26, 209–264 (1975)Google Scholar
  178. 178.
    Lovász, L.: 2-matchings and 2-covers of hypergraphs. Acta Math. Hungar.26, 433–444 (1975)Google Scholar
  179. 179.
    Lovász, L.: On two minimax theorems in graph theory. J. Comb. Theory (B)21, 96–103 (1976)Google Scholar
  180. 180.
    Lovász, L.: Covers, packings and some heuristic algorithms. In: Proc. 5th British Comb. Conf., Congressus Numerantium 15, Utilitas Math., Winnipeg, 1976, pp. 417–429Google Scholar
  181. 181.
    Lovász, L.: Flats in matroids and geometric graphs. In: Combinatorial Surveys (Proc. 6th British Combin. Conf.) edited by P.J. Cameron, pp. 45–86. New York: Academic Press 1977Google Scholar
  182. 182.
    Lovász, L.: Certain duality principles in integer programming. Ann. Discrete Math.1, 363–374 (1977)Google Scholar
  183. 183.
    Lovász, L.: Some finite basis theorems in graph theory. In: Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely 1976). Proc. Colloq. Math. Soc. J. Bolyai 18, pp. 717–729. Amsterdam: North-Holland 1978Google Scholar
  184. 184.
    Lovász, L.: Graph theory and integer programming. Discrete Optimization (Proc. Adv. Res. Inst. Discrete Optimization and Systems Appl., Banff, Alberta, 1977). Annals of Discrete Math.4, 141–158 (1979)Google Scholar
  185. 185.
    Lovász, L.: Topological and algebraic methods in graph theory. In: Graph Theory and Related Topics (Proc. of Tutte Conf., Waterloo, 1977), edited by J.A. Bondy and U.S.R. Murty, pp. 1–15. New York: Academic Press 1979Google Scholar
  186. 186.
    Lovász, L.: Combinatorial Problems and Exercises. Budapest: Akadémiai Kiadó, Budapest/Amsterdam: North-Holland 1979Google Scholar
  187. 187.
    Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory25, 1–7 (1979)Google Scholar
  188. 188.
    Lovász, L.: Plummer, M.D.: Matching Theory. Annals of Discrete Math.29, Amsterdam: North-Holland (1986)Google Scholar
  189. 189.
    Jia Xi Lu: On large sets of disjoint Steiner triple systems I, II and III. J. Comb. Theory (A)34, 140–146, 147–155, 156–182 (1983)Google Scholar
  190. 190.
    Marcus, M.: Finite Dimensional Multilinear Algebra. New York: Dekker 1975Google Scholar
  191. 191.
    McEliece, R.J., Posner, E.C.: Hide and seek, data storage, and entropy. Amer. Statist.42, 1706–1716 (1971)Google Scholar
  192. 192.
    McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika17, 179–184 (1970)Google Scholar
  193. 193.
    Meyer, J.-C.: Quelques problémes concernant les cliques des hypergraphesh-complets etq-partih-complets. In: Hypergraph Seminar (held in Columbus, Ohio, 1972), edited by C. Berge et al. Lecture Notes in Math. 411, pp. 127–139. New York-Berlin: Springer 1974Google Scholar
  194. 194.
    Meyer, J.-C.: 23rd unsolved problem. In: Hypergraph Seminar (held in Columbus, Ohio, 1972), edited by C. Berge et al. Lecture Notes in Math. 411, pp. 285–286. New York-Berlin: Springer 1974Google Scholar
  195. 195.
    Mills, W.H.: On the covering of pairs by quadruples, I. J. Comb. Theory (A)13, 55–78 (1972)Google Scholar
  196. 196.
    Mills, W.H.: On the covering of pairs by quadruples, II. J. Comb. Theory (A)15, 138–166 (1973)Google Scholar
  197. 197.
    Mills, W.H.: Covering designs I: covering by a small number of subsets. Ars Combinatoria8, 199–315 (1979)Google Scholar
  198. 198.
    Mills, W.H.: A covering of pairs by quintuples. Ars Combinatoria18, 21–31 (1984)Google Scholar
  199. 199.
    Mills W.H., Mullin, R.C.: Covering pairs by quintuples: the casev ≡ 3 (mod 4). (prepared)Google Scholar
  200. 200.
    Motzkin, T.S.: Comonotone curves and polyhedra, Abstr. 111. Bull. Amer. Math. Soc.63, 35 (1957)Google Scholar
  201. 201.
    Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Canad. J. Math.17, 533–540 (1965)Google Scholar
  202. 202.
    Mouyart, A.F., Sterboul, F.: Decomposition of the complete hypergraph into delta-systems, I. J. Comb. Theory (A)40, 290–304 (1985)Google Scholar
  203. 203.
    Mouyart, A.F., Sterboul, F.: Decomposition of the complete hypergraph into delta-systems, II. J. Comb. Theory (A)41, 139–149 (1986)Google Scholar
  204. 204.
    Mulder, H.M.: The number of edges in ak-Helly hypergraph (Proc. Colloq. Marseille-Luminy, 1981, edited by C. Berge et al.) Annals of Discrete Math.17, 497–501 (1983)Google Scholar
  205. 205.
    Nemhauser, G.L., Trotter, L.E., Jr.: Properties of vertex packing and independence system polyhedra. Math. Progr.6, 48–61 (1974)Google Scholar
  206. 206.
    Pach, J., Surányi, L.: On graphs of diameter 2. Ars Combinatoria11, 61–78 (1981)Google Scholar
  207. 207.
    Pach, J., Surányi, L.: Graphs of diameter 2 and linear programming. In: Algebraic Methods in Graph Theory, edited by L. Lovász et al. (Proc. Colloq. Math. Soc. J. Bolyai, 25, Szeged, Hungary 1978), pp. 599–629. Amsterdam: North-Holland 1981Google Scholar
  208. 208.
    Pelikán, J.: Properties of balanced incomplete block designs. In: Combinatorial Theory and its Appl, Colloq. Math. Soc. J. Bolyai 4 (Balatonfüred, Hungary 1969), pp. 869–889. Amsterdam: North-Holland 1970Google Scholar
  209. 209.
    Perles, M.A. (written by Zaks, J.): At most 2d+1 neighborly simplices inE d. In: Proc. Colloq. on Convexity, Israel, March 1981, edited by M. Rosenfeld et al. Annals of Discrete Math.20, 253–254 (1984)Google Scholar
  210. 210.
    Petruska, Gy., Szemerédi, E.: On a combinatorial problem 1. Studia Sci. Math. Hungar.7, 363–374 (1972)Google Scholar
  211. 211.
    Pin, J.-E.: On two combinatorial problems arising from automata theory. In: Proc. Colloq. Marseille-Luminy, 1981, edited by C. Berge et al. Annals of Discrete Math.17, 535–548 (1983)Google Scholar
  212. 212.
    Pippenger, N., Spencer, J.: Asymptotic packing and edgecoloring of near regular hypergraphs (prepared)Google Scholar
  213. 213.
    Plummer, M.D.: On a family of line-critical graphs. Monatsh. Math.71, 40–48 (1967)Google Scholar
  214. 214.
    De Resmini, M.J.: On blocking sets in symmetric BIBD's withλ ≥ 2. J. Geometry18, 194–198 (1982)Google Scholar
  215. 215.
    De Resmini, M.J.: On 2-blocking sets in projective planes. In: Proc. 10th British Comb. Conf. Glasgow, 1985. Ars Combinatoria20B, 59–69 (1985)Google Scholar
  216. 216.
    De Resmini, M.J.: On 3-blocking sets in projective planes. In: Combinatorial Design Theory. Annals of Discrete Math.34 (1987)Google Scholar
  217. 217.
    Rödl, V.: On a packing and covering problem. Europ. J. Comb.6, 69–78 (1985)Google Scholar
  218. 218.
    Rosenfeld, M.: On a problem of C.E. Shannon in graph theory. Proc. Amer. Math. Soc.18, 315–319 (1967)Google Scholar
  219. 219.
    Roudneff, J.-P.: Private communication (1986)Google Scholar
  220. 220.
    Ryser, H.J.: An extension of a theorem of deBruijn and Erdös on combinatorial designs. J. Algebra10, 246–261 (1968)Google Scholar
  221. 221.
    Sane, S.S.: An extremal property of the 4-(23, 7, 1) design. In: Proc. 16th S.-E. Conf. Combin., Graph Th, and Comp. Boca Raton, Fla 1985. Congressus Numerantium49, 191–193 (1985)Google Scholar
  222. 222.
    Sauer, N.: The largest number of edges of a graph such that not more thang intersect at a point and not more thann are independent. In: Combinatorial Math. and Appl. (Proc. Conf. Oxford 1969), edited by D.J. Welsh, pp. 253–257. London: Academic Press 1971Google Scholar
  223. 223.
    Schönheim, J.: On coverings. Pacific J. Math.14, 1405–1411 (1964)Google Scholar
  224. 224.
    Schrijver, A., Seymour, P.D.: Solution of two fractional packing problems of Lovász. Discrete Math.26, 177–184 (1979)Google Scholar
  225. 225.
    Shiloach, Y., Vishkin, U., Zaks, S.: Golden ratios in a pairs covering problem. Discrete Math.41, 57–65 (1982)Google Scholar
  226. 226.
    Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z.27, 544–548 (1928)Google Scholar
  227. 227.
    Spencer, J.: Coloringn-sets red and blue. J. Comb. Theory (A)30, 112–113 (1981)Google Scholar
  228. 228.
    Spencer, J.: Asymptotically good coverings. Pacific J. Math.118, 575–586 (1985)Google Scholar
  229. 229.
    Stein, S.K.: Two combinatorial covering theorems. J. Comb. Theory (A)16, 391–397 (1974)Google Scholar
  230. 230.
    Surányi, L.: On line critical graphs. In: Infinite and Finite Sets, edited by A. Hajnal et al. (Proc. Colloq. Math. Soc. J. Bolyai 10, Keszthely, Hungary 1973), pp. 1411–1444. Amsterdam: North-Holland 1975Google Scholar
  231. 231.
    Surányi, L.: Largeα-critical graphs with small deficiency (On line-critical graphs II). Studia Sci. Math. Hungar.10, 397–412 (1975)Google Scholar
  232. 232.
    Szemerédi, E., Tuza, Zs.: Upper bound for transversals of tripartite hypergraphs. Period. Math. Hungar.13, 321–323 (1982)Google Scholar
  233. 233.
    Tarján, T.: Complexity of lattice-configurations. Studia Sci. Math. Hungar.10, 203–211 (1975)Google Scholar
  234. 234.
    Todorov, D.T.: Some coverings derived from finite planes. In: Finite and Infinite Sets (Proc. Colloq. Math. Soc. J. Bolyai 37, Eger, Hungary 1981) pp. 697–710. Amsterdam: North-Holland 1984Google Scholar
  235. 235.
    Todorov, D.T.: On the covering of pairs by 13 blocks. C.R. Acad. Bulgare Sci.38, 691–694 (1985)Google Scholar
  236. 236.
    Tutte, W.T.: The 1-factors of oriented graphs. Proc. Amer. Math. Soc.4, 922–931 (1953)Google Scholar
  237. 237.
    Tuza, Zs.: Some special cases of Ryser's conjecture (preprint 1978)Google Scholar
  238. 238.
    Tuza, Zs.: Ryser's conjecture on transversals ofr-partite hypergraphs. Ars Combin.16B, 201–209 (1983)Google Scholar
  239. 239.
    Tuza, Zs.: Helly-type hypergraphs and Sperner families. Europ. J. Comb.5, 185–187 (1984)Google Scholar
  240. 240.
    Tuza, Zs.: Critical hypergraphs and intersecting set-pair systems. J. Comb. Theory (B)39, 134–145 (1985)Google Scholar
  241. 241.
    Tuza, Zs.: Inequalities for two-set systems with prescribed intersections. Graphs and Combinatorics3, 75–80 (1987)Google Scholar
  242. 242.
    Vrto, I., Znám, Š.: Minimal graphs of diameter two and given maximal degree. Studia Sci. Math. Hungar.17 (1982), 283–290 (1985)Google Scholar
  243. 243.
    Wessel, W.: Über eine Klasse paarer Graphen, I.: Beweis einer Vermutung von Erdös, Hajnal, und Moon. Wiss. Z. Tech. Hochsch. Ilmenau12, 253–256 (1966)Google Scholar
  244. 244.
    Wettl, F.: On the nuclei of a pointset of a finite projective plane. Journal of Geometry30, 157–163 (1987)Google Scholar
  245. 245.
    Wilson, R.M.: An existence theory for pairwise balanced designs I–III. J. Comb. Theory (A)13, 220–273 (1972),18, 71–79 (1975)Google Scholar
  246. 246.
    Wilson, R.M.: Decomposition of complete graphs into subgraphs isomorphic to a given graph. In: Proc. 5th British Comb. Conf., Aberdeen, 1975. Congressus Numerantium XV, pp. 647–659. Winnipeg: Utilitas Math. 1976Google Scholar
  247. 247.
    Zaks, J.: Bounds of neighborly families of convex polytopes. Geometriae Dedicata8, 279–296 (1979)Google Scholar
  248. 248.
    Zaks, J.: Neighborly families of 2d d-simplices inE d. Geometriae Dedicata11, 505–507 (1981)Google Scholar
  249. 249.
    Zaks, J.: No nine neighborly tetrahedra exists. In: Lecture on 1986 Summer Research Conf. on Discrete and Comput. Geometry, Santa Cruz, Calif., July 1986 Discrete Math. (to appear)Google Scholar
  250. 250.
    Zaks, J.: Neighborly families of congruent convex polytopes. Amer. Math. Monthly94, 151–155 (1987)Google Scholar
  251. 251.
    Znám, S.: Minimal graphs of diameter two. Studia Sci. Math. Hungar.19, 187–191 (1987)Google Scholar
  252. 252.
    Aharoni, R.: Matchings inn-partiten-graphs. Graphs and Combinatorics1, 303–304 (1985)Google Scholar
  253. 253.
    Bierbrauer, J.: On the weight distribution in binary codes generated by projective planes. Quart. J. Math. Oxford (2)33, 275–279 (1982)Google Scholar
  254. 254.
    Boros, E.: Blocking sets on Galois planes with small line intersection. Ars Combinatoria (to appear)Google Scholar
  255. 255.
    Chung, F.R.K., Gyárfás, A., Trotter, W.T., Jr., Tuza, Zs.: The maximum number of edges in 2K 2-free graphs of bounded degree. (manuscript)Google Scholar
  256. 256.
    Erdös, P., Rothschild, B., Szemerédi, E.: see in [95] or in [114]Google Scholar
  257. 257.
    Erdös, P., Silverman, R., Stein, A.: Intersection properties of families containing sets of nearly the same size. Ars Combinatoria15, 247–259 (1983)Google Scholar
  258. 258.
    Fernandez de la Vega, W.: Sur la cardinalite maximum des couplages d'hypergraphes aleatories uniformes. Discrete Math.40, 315–318 (1982)Google Scholar
  259. 259.
    Finkelstein, L., Kleitman, D., Leighton, T.: Applying the classification theorem for finite simple groups to minimize pin count in uniform permutation architectures. (manuscript)Google Scholar
  260. 260.
    Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completness. San Francisco, CA: Freeman (1979)Google Scholar
  261. 261.
    Geréb, M.: private communicationGoogle Scholar
  262. 262.
    Hochbaum, D.S.: On the fractional solution to the set covering problem. SIAM J. Alg. Disc. Math.4, 221–222 (1983)Google Scholar
  263. 263.
    Ivaniec, H., Pintz, J.: Primes in short intervals. Monatsh. Math.98, 115–143 (1984)Google Scholar
  264. 264.
    Kahn, J., Seymour, P.: private communicationGoogle Scholar
  265. 265.
    Lamken, E.R., Mills, W.H., Mullin, R.C., Vanstone, S.A.: Covering of pairs by quintuples. J. Combinatorial Theory (A)44, 49–68 (1987)Google Scholar
  266. 266.
    Lamken, E.R., Mullin, R.C., Vanstone, S.A.: Some non-existence results on twisted planes related to minimum covers. Congr. Numerantium48, 265–275 (1985)Google Scholar
  267. 267.
    Razborov, A.A.: Lower bounds on the monotone complexity of some Boolean functions. (Russian) Dokl. Akad. Nauk. USSR281, 798–801 (1985)Google Scholar
  268. 268.
    Rogers, M.J., Stanton, R.G.: Packing and covering by triples. Ars Combinatoria13, 61–69 (1982)Google Scholar
  269. 269.
    Tazawa, S., Yamamoto, S.: Hyperclaw decomposition of complete hypergraphs. Annals of Discrete Math.6, 385–391 (1980)Google Scholar
  270. 270.
    Tuza, Zs.: Conjecture in “Finite and Infinite Sets” (Proc. Colloq. Math. Soc. J. Bolyai 37, Eger, Hungary, 1981) p. 888. Amsterdam: North-Holland (1984)Google Scholar
  271. 271.
    Tuza, Zs.: Intersection properties and extremal problems for set systems. In Irregularities of Partitions (Sós, V.T., ed.) (Proc. Colloq. Math. Soc. J. Bolyai, Sopron, Hungary, 1986) (to appear)Google Scholar
  272. 272.
    Tuza, Zs.: A conjecture on triangles of graphs. (manuscript)Google Scholar
  273. 273.
    Tuza, Zs.: On the order of vertex sets meeting all edges of a 3-partite hypergraph. Ars Combinatoria (to appear)Google Scholar
  274. 274.
    Tuza, Zs.: Maximum number of vertices inτ-critical hypergraphs. (manuscript)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Zoltán Füredi
    • 1
    • 2
  1. 1.AT&T Bell Laboratories Murray HillUSA
  2. 2.Department of MathematicsM.I.T.CambridgeUSA

Personalised recommendations