Advertisement

Journal of Biological Physics

, Volume 16, Issue 1, pp 17–23 | Cite as

Molecular orbital studies of the action of thyroid hormone analogs: Effects on oxygen consumption of mitochondria and horseradish peroxidase-catalyzed NADH oxidation

  • Junji Sakurada
  • Misako Aida
  • Chikayoshi Nagata
  • Toichiro Hosoya
Article

Abstract

The electronic structure of thyroxine and related compounds were calculated by semiempirical molecular orbital methods. When the quantum chemical indices obtained were compared with the structure-activity relationship obtained so far byin vivo andin vitro assays, it was found that HOMO (highest occupied molecular orbital) energy levels of thyroxine and its analogs are well correlated with the increase in oxygen consumption of rat kidney mitochondria determined byin vitro assay. This finding permits the hypothesis that these compounds may play a role in activating the electron transport system of mitochondria by mediating the oxidation-reduction of cytochromes. Furthermore, HOMO energy levels of thyroxine and phenol derivatives were found to correlate well with the stimulation of horseradish peroxidase-catalyzed oxidation of NADH. This suggests that the step of electron removal from these compounds by the enzyme system may be a rate-limiting step, confirming the view that phenoxy-radicals meditate the whole reaction.

Keywords

NADH Thyroxine High Occupied Molecular Orbital Electron Transport System NADH Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alderson, R., Pastan, I. and Cheng, S.-Y. 1985Endocrinology 116, 2621–2630.Google Scholar
  2. Andrea, T. A., Cavalieri, R. R., Goldfine, I. D. and Jorgensen, E. C. 1980.Biochemistry 19 55–63.Google Scholar
  3. Baxter, J. D., Eberhardt, N. L., Apriletti, J. W., Johnson, L. K., Ivarie, R. D., Schachter, B. S., Morris, J. A., Seeburg, P. H., Goodman, H. M., Latham, K. R., Polansky, J. R., and Martial, J. A. 1979.Recent. Prog. Horm. Res. 35, 97–153.Google Scholar
  4. Barker, S. B., Shimada, M. and Makiuchi, M. 1965.Endocrinology 76, 115–121.Google Scholar
  5. Bolger, M. B., Jorgensen, E. C. 1980.J. Biol. Chem. 255, 10271–10278.Google Scholar
  6. Botta, J. A., de Mendoza, D., Morero, R. D. and Farias, R. N. 1983.J. Biol. Chem. 258, 6690–6692.Google Scholar
  7. Bringham, R. C., Dewar, M. J. S., Lo D. H. 1975a.J. Am. Chem. Soc. 97, 1285–1293.Google Scholar
  8. Bringham, R. C., Dewar, M. J. S., Lo D. H. 1975b.J. Am. Chem. Soc. 97, 4787–4787.Google Scholar
  9. Cheung, M. C., Slaunwhite Jr., W. R. and Cody, V. 1977,Immunochemistry 14, 435–441.Google Scholar
  10. Cody, V. 1978.Rec. Prog. Horm. Res. 34, 437–475.Google Scholar
  11. Deb, B. M. and Coulson, C. A. 1971.J. Chem. Soc. A., 958–970.Google Scholar
  12. De Mendoza, D., Moreno, H., Massa, E. M., Morero, R. D. and Farias, R. N. 1977.FEBS Lett. 84, 199–203.Google Scholar
  13. Edelman, I. S. and Ismail-Beigi F. 1974.Rec. Prog. Horm. Res. 30, 235–257.Google Scholar
  14. Fukuda, N. 1967. in: Seitairyoushikagaku (ed. Fukui, K., in Japanese) 48–62.Google Scholar
  15. Halpern, J. and Hinkle, P. M. 1984.Endocrinology 115, 95–101.Google Scholar
  16. Horiuchi, R. Cheng, S.-Y., Willingham, M. and Pastan, I. 1982.J. Biol. Chem. 257, 3139–3144.Google Scholar
  17. Hosoya, T., Fujii, T. and Ogawa, S. 1983.J. Theor. Biol. 100, 283–292.Google Scholar
  18. Jolin, T. and Morreale de Escobar 1971.Biochem. J. 125, 869–878.Google Scholar
  19. Jorgensen, E. C. 1978. in:The Thyroid (ed. Werner) 4th edition, pp 125–137.Google Scholar
  20. Klebanoff, S. J. 1959a.J. Biol. Chem. 234, 2437–2442.Google Scholar
  21. Klebanoff, S. J. 1959b.J. Biol. Chem. 234, 2480–2485.Google Scholar
  22. Koerner, D., Schwartz, H. L., Surks, M. I. and Oppenheimer, J. H. 1975.J. Biol. Chem. 38, 6417–6423.Google Scholar
  23. Kollman, P. A., Murray, W. J., Nuss, M. E., Jorgensen, E. C. and Rothenberg, S. 1973.J. Am. Chem. Soc. 95, 8518–8225.Google Scholar
  24. Malbon C. C., Moreno, F. J., Cabelli, R. J. and Fain, J. N. 1978.J. Biol. Chem. 253, 671–678.Google Scholar
  25. Maxfield, F. R., Willingham, M. C. and Pastan, I. 1981.Science 211, 63–65.Google Scholar
  26. Money, W. L., Meltzer, R. I., Young, J. Rawson, R. W. 1958.Endocrinology 63, 20–28.Google Scholar
  27. Oppenheimer, J. H., Schwartz, H. L., Dillman, W. and Surks, M. I. 1973.Biochim. Biophys. Res. Commun. 55, 544–550.Google Scholar
  28. Pittman, C. S., Lindsay, R. H. and Barker, S. B. 1961.Endocrinology 69, 761–768.Google Scholar
  29. Pople, J. A. and Beveridge, D. L. 1970. in:Approximate Molecular Orbital Theory, MacGraw-Hill Co. New York.Google Scholar
  30. Pople, J. A. and Goldon, M. 1967.J. Am. Chem. Soc. 89, 4253–4261.Google Scholar
  31. Sakurada, J., Takahashi, S and Hosoya, T. 1986.J. Biol. Chem. 261, 9657–9662.Google Scholar
  32. Schole, J. 1982.J. Theor. Biol. 96, 579–615.Google Scholar
  33. Segal, J. and Ingbar, S. H. 1982. 12th Meeting of European Thyroid Association 89A.Google Scholar
  34. Snyder, S. M., Cavalieri, R. R., Gofine, I. D., Ingbar, S. H. and Jorgensen, E. C. 1976.J. Biol. Chem. 251, 6489–6494.Google Scholar
  35. Somack, R., Andrea, T. A. and Jorgensen, E. C. 1982.Biochemistry 21, 163–170.Google Scholar
  36. Sterling, K. 1964.J. Clin. Invest. 43, 1721–1729.Google Scholar
  37. Sterling, K. 1979a.New Eng. J. Med. 300, 117–123.Google Scholar
  38. Sterling, K. 1979b.New Eng. J. Med. 300, 173–177.Google Scholar
  39. Sterling, K., Brenner, M. A. and Skurada, T. 1980.Science 210, 340–342.Google Scholar
  40. Sterling, K. Lazarus, J. H., Milch, P.O., Sakurada, T. and Brenner, M. A. 1978.Science 201, 1126–1129.Google Scholar
  41. Takayama, K. and Nakano, M. 1977,Biochemistry 16, 1921–1926.Google Scholar
  42. Westerfeld, W. W., Richert, D. A. and Ruegamer, W. R. 1965.Endocrinology 77, 802–811.Google Scholar

Copyright information

© New Forums Press, Inc. 1988

Authors and Affiliations

  • Junji Sakurada
    • 1
  • Misako Aida
    • 2
  • Chikayoshi Nagata
    • 2
  • Toichiro Hosoya
    • 1
  1. 1.Faculty of Pharmaceutical SciencesChiba UniversityChiba, ChibaJapan
  2. 2.Biophysics DivisionNational Cancer Center Research InstituteTokyoJapan

Personalised recommendations