Nonlinear Dynamics

, Volume 1, Issue 1, pp 23–38 | Cite as

Numerical simulations of chaotic dynamics in a model of an elastic cable

  • F. Benedettini
  • G. Rega


The finite motions of a suspended elastic cable subjected to a planar harmonic excitation can be studied accurately enough through a single ordinary-differential equation with quadratic and cubic nonlinearities.

The possible onset of chaotic motion for the cable in the region between the one-half subharmonic resonance condition and the primary one is analysed via numerical simulations. Chaotic charts in the parameter space of the excitation are obtained and the transition from periodic to chaotic regimes is analysed in detail by using phase-plane portraits, Poincaré maps, frequency-power spectra, Lyapunov exponents and fractal dimensions as chaotic measures. Period-doubling, sudden changes and intermittency bifurcations are observed.

Key words

numerical simulation chaos cable resonances bifurcations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benedettini, F., Rega, G., and Vestroni, F., ‘Modal coupling in the free nonplanar finite motion of an elastic cable’,Meccanica 21, 1986, 38–46.Google Scholar
  2. 2.
    Luongo, A., Rega, G., and Vestroni, F., ‘On large-amplitude vibrations of cables’,J. Sound Vibrat.116, 1987, 573–575.Google Scholar
  3. 3.
    Takahashi, K. and Konishi, Y., ‘Non-linear vibrations of cables in three dimensions, Part I: Non-linear free vibration’,J. Sound Vibrat.118, 1987, 69–84.Google Scholar
  4. 4.
    Takahashi, K. and Konishi, Y., ‘Non-linear vibrations of cables in three dimensions, Part II: Out-of-plane vibrations under in-plane sinusoidally time-varying load’,J. Sound Vibrat. 118, 1987, 85–97.Google Scholar
  5. 5.
    Benedettini, F. and Rega, G., ‘Nonlinear dynamics of an elastic cable under planar excitation’,Int. J. Non-Linear Mech. 22, 1987, 497–509.Google Scholar
  6. 6.
    Rega, G. and Benedettini, F., ‘Planar nonlinear oscillations of elastic cables under subharmonic resonance conditions’,J. Sound Vibrat. 132, 1989, 367–381.Google Scholar
  7. 7.
    Szemplinska-Stupnicka, W. and Bajkowski, J., ‘The 1/2 subharmonic resonance and its transition to chaotic motion in a non-linear oscillator’,Int. J. Non-Linear Mech. 21, 1986, 401–419.Google Scholar
  8. 8.
    Szemplinska-Stupnicka, W., Secondary resonance and approximate models of routes to chaotic motion in non-linear oscillators’,J. Sound Vibrat.113, 1987, 155–172.Google Scholar
  9. 9.
    Thompson, J. M. T. and Stewart, H. B.,Nonlinear Dynamics and Chaos, Wiley, Chichester, 1986.Google Scholar
  10. 10.
    Moon, F.,Chaotic Vibrations, Wiley, New York, 1987.Google Scholar
  11. 11.
    Fang, T. and Dowell, E. H., ‘Numerical simulations of periodic and chaotic responses in a stable Duffing system’,Int. J. Non-Linear Mech.,22, 1987, 401–425.Google Scholar
  12. 12.
    Zavodney, L. D., Nayfeh, A. H., and Sanchez, N. E., ‘The response of a single-degree-of-freedom system with quadratic and cubic nonlinearities to a principal parametric resonance’,J. Sound Vibrat. 129, 1989, 417–442.Google Scholar
  13. 13.
    Irvine, H. K. and Caughey, T. K., ‘The linear theory of free vibrations of a suspended cable’,Proc. R. Soc. A 341, 1974, 299–315.Google Scholar
  14. 14.
    Tongue, B. H., ‘Characteristics of numerical simulations of chaotic systems’,ASME J. Appl. Mech. 54, 1987, 695–699.Google Scholar
  15. 15.
    Wolf, A., Swift, J., Swinney, H. L., and Vastano, J., ‘Determining Lyapunov exponents from a time series’,Physica 16D, 1985, 285–317.Google Scholar
  16. 16.
    Frederickson, R., Kaplan, J., Yorke, E., and Yorke, J., ‘The Lyapunov dimension of strange attractors’,J. Diff. Eqs. 49, 1983, 185.Google Scholar
  17. 17.
    Grassberger, P., and Proccacia, I., ‘Characterization of strange attractors’,Phys. Rev. Lett. 50, 1983, 346–349.Google Scholar
  18. 18.
    Kreuzer, E. J., ‘On the numerical study of bifurcation problems’, in: Küpper, T., Seydel, R., and Troger, H. (eds.),Bifurcations: Analysis, Algorithm. Applications, Birkhäuser, Basel, 1987, 161–171.Google Scholar
  19. 19.
    Pezeshki, C. and Dowell, E. H., ‘Generation and analysis of Lyapunov exponents for the buckled beam’,Int. J. Non-Linear Mech. 24, 1989, 79–97.Google Scholar
  20. 20.
    Moon, F. C. and Li, G. X., ‘The fractal dimension of the two-well potential strange attractor’,Physica 17D, 1985, 99–108.Google Scholar
  21. 21.
    Zavodney, L. D. and Nayfeh, A. H., ‘The response of a single-degree-of-freedom system with quadratic and cubic non-linearities to a fundamental parametric resonance’,J. Sound Vibrat. 120, 1988, 63–93.Google Scholar
  22. 22.
    Collett, P. and Eckmann, J. P.,Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Boston, 1980.Google Scholar
  23. 23.
    Lauterborn, W. and Cramer, E., ‘Subharmonic route to chaos observed in acoustics’,Phys. Rev. Lett. 47, 1981, 1445–1448.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • F. Benedettini
    • 1
  • G. Rega
    • 1
  1. 1.Dipartimento di Ingegneria delle Strutture, delle Acque e del TerrenoUniversità dell' AquilaL'AquilaItaly

Personalised recommendations