Inventiones mathematicae

, Volume 97, Issue 1, pp 195–207 | Cite as

The algebraic characterization of the exteriors of certain 2-knots

  • Jonathan A. Hillman
Article
  • 119 Downloads

Summary

We study 2-knots with virtually solvable group by applying recent work of Freedman to the 4-manifolds obtained by surgery on such knots. In particular we show that “Gluck reconstruction” is the only ambiguity in recovering the Cappell-Shaneson knots (as TOP locally flat knots) from their groups alone.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bak, A.: The computation of even dimensional surgery groups of odd torsion groups. Commun. Algebra6, 1393–1458 (1978)Google Scholar
  2. 2.
    Bieri, R.: Homological dimensions of discrete groups. Queen Mary College Lecture Notes, London 1976Google Scholar
  3. 3.
    Browder, W.: Diffeomorphisms of 1-connected manifolds. Trans. Am. Math. Soc.128, 155–163 (1967)Google Scholar
  4. 4.
    Cappell, S.E.: Mayer-Vietoris sequences in HermiteanK-theory. In: Bass, H. (ed.) HermiteanK-theory and geometric applications (Lect. Notes Math. vol. 343, pp. 478–512) Berlin Heidelberg New York: Springer 1973Google Scholar
  5. 5.
    Cappell, S.E.: A splitting theorem for manifolds. Invent. Math.33, 69–170 (1976)Google Scholar
  6. 6.
    Cappell, S.E., Shaneson, J.L.: There exist inequivalent knots with the same complement. Ann. Math.103, 349–353 (1976)Google Scholar
  7. 7.
    Cappell, S.E., Shaneson, J.L.: On 4-dimensionals-cobordisms. J. Differ. Geom.22, 97–115 (1985)Google Scholar
  8. 8.
    Cochran, T.: Ribbon knots inS 4. J. Lond. Math. Soc.28, 563–576 (1983)Google Scholar
  9. 9.
    Culler, M.C., Gordon, C.McA., Luecke, J., Shalen, P.B.: Dehn surgery on knots. Ann. Math.125, 237–300 (1987)Google Scholar
  10. 10.
    Davis, M.W.: Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. Math.117, 293–324 (1982)Google Scholar
  11. 11.
    Dyer, E., Vasquez, A.T.: The sphericity of higher dimensional knots. Can. J. Math.25, 1132–1136 (1972)Google Scholar
  12. 12.
    Farrell, F.T., Hsiang, W.C.: The Whitehead group of poly-(finite or cyclic) groups. J. Lond. Math. Soc.24, 308–324 (1981)Google Scholar
  13. 13.
    Farrell, F.T., Hsiang, W.C.: Topological characterization of flat and almost flat riemannian manifoldsM n(n≠3, 4). Am. J. Math.105, 641–672 (1983)Google Scholar
  14. 14.
    Fox, R.H.: A quick trip through knot theory. In: M.K. Fort, Jr. (ed.) Topology of 3-manifolds and related topics. Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167Google Scholar
  15. 15.
    Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom.17, 357–453 (1982)Google Scholar
  16. 16.
    Freedman, M.H.: The disc theorem for four-dimensional manifolds. Proc. Int. Congr. Math., Warsaw 1983, pp. 647–663Google Scholar
  17. 17.
    Gildenhuys, D.: Classification of soluble groups of cohomological dimension two. Math. Z.166, 21–25 (1979)Google Scholar
  18. 18.
    Gluck, H.: The embedding of two-spheres in the four-sphere. Trans. Am. Math. Soc.104, 308–333 (1962)Google Scholar
  19. 19.
    Gordon, C.McA.: Knots in the 4-sphere. Comment. Math. Helv.51, 585–596 (1976)Google Scholar
  20. 20.
    Hillman, J.A.: High dimensional knot groups which are not two-knot groups. Bull. Aust. Math. Soc.16, 449–462 (1977)Google Scholar
  21. 21.
    Hillman, J.A.: Orientability, asphericity and two-knot groups. Houston J. Math.6, 67–76 (1980)Google Scholar
  22. 22.
    Hillman, J.A.: Abelian normal subgroups of two-knot groups. Comment. Math. Helv.61, 122–148 (1986)Google Scholar
  23. 23.
    Kato, M.: A concordance classification of PL homeomorphisms ofS p ×S q. Topology8, 271–383 (1969)Google Scholar
  24. 24.
    Kervaire, M.A.: Les noeuds de dimensions supérieures. Bull. Soc. Math. Fr.93, 225–271 (1965)Google Scholar
  25. 25.
    Kirby, R.: Problems in low dimensional manifold theory. In: Algebraic and geometric topology. Proc. Symp. Pure Math. 32 vol. 2, Am. Math. Soc. 1978, pp. 273–312Google Scholar
  26. 26.
    Litherland, R.: Topics in knot theory. Thesis, Cambridge University 1978Google Scholar
  27. 27.
    Mihalik, M.: Solvable groups that are simply connected at ∞. Math. Z.195, 79–87 (1987)Google Scholar
  28. 28.
    Papakyriakopolous, C.: On Dehn's lemma and the asphericity of knots. Ann. Math.66, 1–26 (1957)Google Scholar
  29. 29.
    Plotnick, S.P.: The homotopy type of four-dimensional knot complements. Math. Z.183, 447–471 (1983)Google Scholar
  30. 30.
    Plotnick, S.P.: Equivariant intersection froms, knots inS 4, and rotations in 2-spheres. Trans. Am. Math. Soc.296, 543–575 (1986)Google Scholar
  31. 31.
    Plotnick, S.P., Suciu, A.I.: Fibred knots and spherical space forms. J. Lond. Math. Soc.35, 514–526 (1987)Google Scholar
  32. 32.
    Rosset, S.: A vanishing theorem for Euler characteristics. Math. Z.185, 211–215 (1984)Google Scholar
  33. 33.
    Rubinstein, J.H.: Seminar, Canberra, July 1986Google Scholar
  34. 34.
    Stark, C.W.: Structure sets vanish for certain bundles over Seifert manifolds. Trans. Am. Math. Soc.285, 603–615 (1985)Google Scholar
  35. 35.
    Suzuki, S.: Knotting problems of 2-spheres in the 4-sphere. Math. Sem. Notes Kobe Univ.4, 241–371 (1976)Google Scholar
  36. 36.
    Waldhausen, F.: AlgebraicK-theory of generalized free products I, II. Ann. Math.108, 135–256 (1978)Google Scholar
  37. 37.
    Wall, C.T.C.: Poincaré complexes I. Am. Math.86, 213–245 (1967)Google Scholar
  38. 38.
    Wall, C.T.C.: Surgery on compact manifolds. London New York: Academic Press 1970Google Scholar
  39. 39.
    Weinberger, S.: The Novikov conjecture and low-dimensional topology. Comment. Math. Helv.58, 355–364 (1983)Google Scholar
  40. 40.
    Weinberger, S.: On fibering four-and five-manifolds. Israel J. Math.59, 1–7 (1987)Google Scholar
  41. 41.
    Yoshikawa, K.: On two-knot groups with the finite commutator subgroups. Math. Sem. Notes Kobe Univ.8, 321–330 (1980)Google Scholar
  42. 42.
    Hillman, J.A.: 2-knots and their groups. (Austral. Math. Soc. Lecture Series 5) Cambridge New York Melbourne Sydney: Cambridge University Press 1989Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Jonathan A. Hillman
    • 1
  1. 1.School of Mathematics, Physics, Computing and ElectronicsMacquarie UniversityAustralia

Personalised recommendations