Inventiones mathematicae

, Volume 97, Issue 1, pp 159–193 | Cite as

On the leading correction of the Thomas-Fermi model: Lower bound

  • Heinz Siedentop
  • Rudi Weikard
  • A. M. Klaus Müller
Article

Summary

We prove that the quantum mechanical ground state energy of an atom with nuclear chargeZ can be bounded from below by the sum of the Thomas-Fermi energy of the problem plusq/8Z2 plus terms of ordero(Z 2 ).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antosiewicz, H.A.: Bessel functions of fractional order. In: Abramowitz, M., Stegun, A. (eds.). Handbook of mathematical functions with formulas, graphs, and mathematical tables. Chap. 10. New York: Dover 1965, pp. 435–478Google Scholar
  2. 2.
    Birkhoff, G., Rota, G.-C.: Ordinary differential equations. New York: John Wiley, 3 ed., 1978Google Scholar
  3. 3.
    Erdélyi, A.: Asymptotic expansions. New York: Dover, 1 ed., 1956Google Scholar
  4. 4.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher transcendental functions. Vol. 2. New York: McGraw-Hill, 1 ed., 1953Google Scholar
  5. 5.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher transcendental functions. Vol. 1. New York: McGraw-Hill, 1 ed., 1953Google Scholar
  6. 6.
    Hughes, W.: An atomic energy lower bound that gives Scott's correction. PhD thesis, Princeton, Department of Mathematics, 1986. See also: Adv. Math., (to appear)Google Scholar
  7. 7.
    Langer, R.E.: On the connection formulas and the solutions of the wave equation. Phys. Rev.51, 669–676 (1937)Google Scholar
  8. 8.
    Lieb, E.H.: A lower bound for Coulomb energies. Phys. Lett.70A, 444–446 (1979)Google Scholar
  9. 9.
    Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math.23, 22–116 (1977)Google Scholar
  10. 10.
    Lieb, E.H., Thirring, W.E.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Lieb, E.H., Simon, B., Wightman, A.S. (eds.). Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann. Princeton: Princeton University Press 1976Google Scholar
  11. 11.
    Siedentop, H., Weikard, R.: On the leading energy correction for the statistical model of the atom: interacting case. Commun. Math. Phys.112, 471–490 (1987)Google Scholar
  12. 12.
    Siedentop, H., Weikard, R.: Upper bound on the ground state energy of atoms that proves Scott's conjecture. Phys. Lett. A120, 341–342 (1987)Google Scholar
  13. 13.
    Siedentop, H.K.H., Weikard, R.: On the leading energy correction for the statistical model of the atom: non-interacting case. Abh. Braunschweig. Wiss. Ges. (Germany)38, 145–158 (1986)Google Scholar
  14. 14.
    Slater, J.C.: A simplification of the Hartree-Fock method. Phys. Rev.81, 385–390 (1951)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Heinz Siedentop
    • 1
  • Rudi Weikard
    • 1
  • A. M. Klaus Müller
    • 1
  1. 1.Carolo-WilhelminaInstitut für Mathematische PhysikBraunschweigFRG

Personalised recommendations