Periodica Mathematica Hungarica

, Volume 17, Issue 3, pp 177–184

Steiner triple systems of order 19 associated with a certain type of projective plane of order 10

  • A. R. Prince
Article

Abstract

It is shown that the existence of a Steiner triple system of order 19 satisfying certain very restrictive conditions would lead to the completion of a large portion of the incidence matrix of a projective plane of order 10.

AMS (MOS) subject classifications (1980)

Primary 51E15 Secondary 05B25 

Key words and phrases

Finite projective planes Steiner triple systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. D. Baker andR. M. Wilson, Nearly Kirkman triple systems,Utilitas Math. 11 (1977), 289–296.MR 56: 133Google Scholar
  2. [2]
    R. H. F. Denniston, Non-isomorphic reverse Steiner triple systems of order 19,Ann. Discrete Math. 7 (1980), 255–264.MR 84d: 05 039Google Scholar
  3. [3]
    J. Doyen, A note on reverse Steiner triple systems,Discrete Math. 1 (1972), 315–319.MR 45: 8542Google Scholar
  4. [4]
    M. Hall, Jr., Configurations in a plane of order ten,Ann. Discrete Math. 6 (1980), 157–174.MR 82a: 94 087Google Scholar
  5. [5]
    Z. Janko andTran Van Trung, On projective planes of order 12 with an automorphism of order 13, I,Geom. Dedicata 11 (1981), 257–284.MR 83d: 05 022aGoogle Scholar
  6. [6]
    A. R. Prince, On vectors of weight 16 in the code of a projective plane of order 10,Proc. Roy. Soc. Edinburgh Sect. A 95 (1983), 137–146.MR 85h: 51 022Google Scholar
  7. [7]
    A. R. Prince, Steiner triple systems of order 19 constructed from the Steiner triple system of order 9,Proc. Roy. Soc. Edinburgh Sect. A 94 (1983), 89–92.MR 84f: 05 022Google Scholar
  8. [8]
    A. Rosa, On reverse Steiner triple systems,Discrete Math. 2 (1972), 61–72.MR 45: 4996Google Scholar

Copyright information

© Akadémiai Kiadó 1986

Authors and Affiliations

  • A. R. Prince
    • 1
  1. 1.Department of MathematicsHeriot—Watt UniversityEdinburghScotland

Personalised recommendations