Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A study on the extended Hermite—Fejér type interpolation of higher order

This is a preview of subscription content, log in to check access.

References

  1. [1]

    D. L. Berman, K teorii interpoljacii (On the theory of interpolation),Dokl. Akad. Nauk SSSR 163 (1965), 551–554.MR 33: 4530

  2. [1a]

    D. L. Berman, On the theory of interpolation,Soviet Math. Dokl. 6 (1965), 945–948.

  3. [2]

    D. L. Berman, Issledovanie interpoljacionnogo processa Èrmita—Feiera (An investigation of the Hermite—Fejér interpolation process),Dokl. Akad. Nauk SSSR 187 (1969), 241–244.MR 40: 3127

  4. [2a]

    D. L. Berman, An investigation of the Hermite—Fejér interpolation process,Soviet Math. Dokl. 10 (1969), 813–816.

  5. [3]

    D. L. Berman, Ob odnom vsjudu rashodjaščemsja interpoljacionnom processe Èrmita—Feiera (On an everywhere divergent Hermite—Fejér interpolation process),Izv. Vysš. Učebn. Zaved. Matematika 1970/1, 3–8.MR 41: 7343

  6. [4]

    D. L. Berman, Vsjudu rashodjaščisja rasširennyi interpoljacionnyi process Èrmita—Feiera (An everywhere divergent extended Hermite—Fejér interpolation process),Izv. Vysš. Učebn. Zaved. Matematika 1975/9, 84–87.MR 55: 10904

  7. [5]

    D. L. Berman, Vsjudu rashodjaščiisja rasširennyi interpoljacionnyi process Krylova—Štaermana (An everywhere divergent extended Krylov—Štaerman interpolation process),Izv. Vysš. Učebn. Zaved. Matematika 1981/4, 5–11.MR 82m: 41001

  8. [6]

    W. L. Cook andT. M. Mills, On Berman's phenomenon in interpolation theory,Bull. Austral. Math. Soc. 12 (1975), 457–465.MR 51: 13520

  9. [7]

    L. Fejér, Über Interpolation,Göttinger Nachrichten,1916, 66–91.

  10. [8]

    N. M. Krylov andY. I. Steuermann (I. Ja. Štaerman), Sur quelques formules d'interpolation convergentes pour toute fonction continue,Bull. Sci. Phys. Math. Acad. Sci. Ukraine 1 (1922), 13–16.

  11. [9]

    A. Sharma andJ. Tzimbalario, Quasi-Hermite—Fejér type interpolation of higher order,J. Approximation Theory 13 (1975), 431–442.MR 51: 6226

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berman, D.L. A study on the extended Hermite—Fejér type interpolation of higher order. Period Math Hung 17, 321–326 (1986). https://doi.org/10.1007/BF01848392

Download citation

AMS (MOS) subject classification (1980)

  • Primary 41A05

Key words and phrases

  • Approximation and expansions
  • convergence
  • divergence