Advertisement

Biological Cybernetics

, Volume 35, Issue 1, pp 1–9 | Cite as

The Ornstein-Uhlenbeck process as a model for neuronal activity

I. Mean and variance of the firing time
  • Luigi M. Ricciardi
  • Laura Sacerdote
Article

Abstract

Mean and variance of the first passage time through a constant boundary for the Ornstein-Uhlenbeck process are determined by a straight-forward differentiation of the Laplace transform of the first passage time probability density function. The results of some numerical computations are discussed to shed some light on the input-output behavior of a formal neuron whose dynamics is modeled by a diffusion process of Ornstein-Uhlenbeck type.

Keywords

Density Function Probability Density Numerical Computation Diffusion Process Probability Density Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, L.: Stochastic differential equations. New York: Wiley 1974Google Scholar
  2. Calvin, W.H., Stevens, C.H.: A Markov process model for neuron behavior in the interspike interval. In: Proc. Ann. Conf. Eng. Med. Biol. 18th, Vol. 7, p. 118, 1965 (copy available on request)Google Scholar
  3. Capocelli, R.M., Ricciardi, L.M.: Diffusion approximation and first passage time problem for a model neuron. Kybernetik8, 214–223 (1971)PubMedGoogle Scholar
  4. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys.15, 1–89 (1943)Google Scholar
  5. Doob, J.L.: The Brownian movement and stochastic equations. Ann. Math.43, 351–369 (1949)Google Scholar
  6. Erdelyi, A., Magnus, F., Oberhettinger, F.G., Tricomi, F.G.: Higher transcendental functions, Vol. 1. New York: McGraw Hill 1953Google Scholar
  7. Gluss, B.A.: A model for neuron firing with exponential decay of potential resulting in diffusion equations for probability density. Bull. Math. Biophys.29, 233–243 (1967)PubMedGoogle Scholar
  8. Jazwinski, A.H.: Stochastic processes and filtering theory. New York: Academic Press 1970Google Scholar
  9. Johannesma, P.I.M.: Diffusion models for the stochastic activity of neurons. In: Neural networks, pp. 116–144. Caianiello, E.R. (ed.). Berlin, Heidelberg, New York: Springer 1968Google Scholar
  10. Kac, M.: Random walk and the theory of Brownian motion. Ann. Math.54, 369–391 (1946)Google Scholar
  11. Keilson, J., Ross, H.: Passage time distribution for the Ornstein-Uhlenbeck process. Sel. Tables Math. Stat.3, 233–328 (1975)Google Scholar
  12. Ricciardi, L.M.: Diffusion approximation for a multi-input model neuron. Biol. Cybernetics24, 237–240 (1976)Google Scholar
  13. Ricciardi, L.M.: Diffusion processes and related topics in biology. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  14. Roy, B., Smith, D.R.: Analysis of the exponential decay model of the neuron showing frequency threshold effects. Bull. Math. Biophys.31, 341–357 (1969)PubMedGoogle Scholar
  15. Sacerdote, L.: Approssimazioni diffusive e problemi di sparo per neuroni singoli. Univ. of Turin, dissertation for “Dottore in Fisica” 1977Google Scholar
  16. Sato, S.: Diffusion approximation for the stochastic activity of a neuron and moments of the interspike interval distribution. In: Progress in cybernetics and system research, Vol. 6. Pichler, F., Trappl, R. (eds.) (in press)Google Scholar
  17. Siebert, W.M.: On stochastic neural models of the diffusion type. Q. Progr. Rept., Res. Lab. Electronics, M.I.T.94, 281–287 (1969)Google Scholar
  18. Siegert, A.J.F.: On the first passage time probability problem. Phys. Rev.81, 617–623 (1951)Google Scholar
  19. Stratonovich, R.L.: Topics in the theory of random noise, Vol. 1. New York: Gordon & Breach 1963Google Scholar
  20. Stratonovich, R.L.: Conditional Markov processes and their applications to the theory of optimal control. New York: Elsevier 1968Google Scholar
  21. Sugiyama, H., Moore, G.P., Perkel, D.M.: Solutions for a stochastic model of neuronal spike production. Math. Biosci.8, 323–341 (1970)Google Scholar
  22. Thomas, M.U.: Some mean first passage time approximations for the Ornstein-Uhlenbeck process. J. Appl. Prob.12, 600–604 (1975)Google Scholar
  23. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of Brownian motion. Phys. Rev.36, 823–841 (1930)Google Scholar
  24. Wang, M.C., Uhlenbeck, G.E.: On the theory of the brownian motion II. Rev. Mod. Phys.17, 323–342 (1945)Google Scholar
  25. Wong, E.: Stochastic processes in information and dynamical systems. New York: McGraw Hill 1971Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Luigi M. Ricciardi
    • 1
  • Laura Sacerdote
    • 1
  1. 1.Istituto di Scienze dell'InformazioneUniversità di SalernoSalernoItaly

Personalised recommendations