aequationes mathematicae

, Volume 18, Issue 1–2, pp 54–63 | Cite as

Some monotonicity properties and characterizations of the gamma function

  • Martin E. Muldoon
Research Papers


Primary 33A15 Secondary 39A10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anastassiadis, J.,Une propriété, de la fonction Gamma. Bull. Sci. Math. (2) 81 (1957), 116–118.MathSciNetGoogle Scholar
  2. [2]
    Anastassiadis, J.,Définition des fonctions eulériennes par des équations fonctionelles. Mémorial des Sciences Mathématiques, fasc. 156., Gauthier-Villars, Paris, 1964.Google Scholar
  3. [3]
    Artin, E.,The gamma function. Athena series, Holt, Rinehart and Winston, New York, 1964; German original, B. G. Teubner, Leipzig, 1931.zbMATHGoogle Scholar
  4. [4]
    Bohr, H. andMollerup, J.,Laerebog i matematisk Analyse, III. Jul. Gjellerups Forlag, Copenhagen, 1922.Google Scholar
  5. [5]
    Davis, P. J.,Leonhard Euler’s integral: a historical profile of the gamma function. Amer. Math. Monthly66 (1959), 849–869.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Erdélyi, A., et al.,Higher transcendental functions, vol. 1. McGraw-Hill, New York, 1953.Google Scholar
  7. [7]
    Feller, W.,Completely monotone functions and sequences. Duke Math. J. 5 (1939), 661–674.CrossRefMathSciNetGoogle Scholar
  8. [8]
    John, F.,Special solutions of certain difference equations. Acta Math. 71 (1939), 175–189.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Kairies, H.-H.,Zur axiomatischen Characterisierung der Gammafunktion. J. Reine Angew. Math. 236 (1969), 103–111.zbMATHMathSciNetGoogle Scholar
  10. [10]
    [10]Kairies, H.-H.,Über die logarithmische Ableitung der Gammafunktion. Math. Ann. 184 (1970), 157–162.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Kimberling, C. H.,Two-dimensional complete monotonicity with diagonalization. Amer. Math. Monthly 80 (1973), 789–791.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Krull, W.,Bemerkungen zur Differenzenglcichung g(χ + 1)- g(χ) = ϕ(χ). Math. Nachr. I (1948), 365–376.CrossRefMathSciNetGoogle Scholar
  13. [13]
    Krull, W.,Bemerkungen zur Differenzengleichung g(χ+l)-g(χ)=ϕ(χ), II. Math. Nachr. 2 (1949), 251–262.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Kuczma, M.,Functional equations in a single variable. Monografie Matematyczne, Tom 46, Pafistwowe Wydawnictwo Naukowe, Warsaw, 1968.Google Scholar
  15. [15]
    [15]Lazarevic, I. B., andLupas, A.,Functional equations for Wallis and gamma functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 461-497, 245–251 (1974).Google Scholar
  16. [16]
    Mayer, A. E.,Konvexe Lösung der Funktionalgleichung 1/f(χ+ 1)=χf(χ). Acta Math. 70 (1939), 57–62.CrossRefMathSciNetGoogle Scholar
  17. [17]
    Muldoon, M. E.,Some characterizations of the gamma function involving the notion of complete monotonicity. Aequationes Math. 8 (1972), 212–215.CrossRefMathSciNetGoogle Scholar
  18. [18]
    Oldham, K. I. andSpanier, J.,The fractional calculus. Academic Press, New York and London, 1974.zbMATHGoogle Scholar
  19. [19]
    Widder, D. V.,The Laplace transform. Princeton University Press, Princeton, N.J., 1941.zbMATHGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1978

Authors and Affiliations

  • Martin E. Muldoon
    • 1
  1. 1.Department of MathematicsYork UniversityOntarioCanada

Personalised recommendations