Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Statistical determination of the coefficient of self-diffusion in a monatomic molecular crystal

  • 24 Accesses

Abstract

Using the statistical theory of a crystal, we calculate the coefficient of self-diffusion in a monatomic molecular crystal for diffusion by the vacancy mechanism with a Lennard-Jones (6–12) potential. The results are compared to experiment for argon, krypton, and xenon.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    S. Chandrasekar, Stochastic Problems in Physics and Astronomy [Russian translation], IL, Moscow (1947).

  2. 2.

    J. Manning, Kinetics of the Diffusion of Atoms in Crystals [Russian translation], Mir, Moscow (1971).

  3. 3.

    B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids [in Russian], Metallurgiya, Moscow (1974).

  4. 4.

    H. R. Clyde, “Rate processes in solids,” Rev. Mod. Phys.,39, No. 2, 373–382 (1967).

  5. 5.

    S. A. Rice, “Dynamical theory of diffusion in crystals,” Phys. Rev.,112, No. 3, 804–811 (1958).

  6. 6.

    O. P. Manley, “A method of evaluating diffusion coefficients in crystals,” J. Phys. Chem. Solids,13, Nos. 3/4, 244–250 (1960).

  7. 7.

    G. H. Vineyard, “Frequency factors and isotope effects in solid state rate processes,” J. Phys. Chem. Solids,3, Nos. 1/2, 121–127 (1957).

  8. 8.

    H. R. Glyde, “Vacancies in argon,” J. Phys. Chem. Solids,27, No. 10, 1659–1665 (1966).

  9. 9.

    E. T. Brook-Levinson and V. V. Belov, “Statistical method for the description of the equilibrium properties of materials at arbitrary values of the density,” Dokl. Akad. Nauk BSSR,24, No. 9, 805–808 (1980).

  10. 10.

    E. T. Brook-Levinson and A. V. Zakharov, “Statistical theory of vacancies in an equilibrium crystal,” Dokl. Akad. Nauk BSSR, No. 6, 514–517 (1981).

  11. 11.

    E. T. Brook-Levinson and A. V. Zakharov, “Statistical thermodynamics of Shottky defects in molecular and ionic crystals,” Inzh.-Fiz. Zh.,44, No. 2, 244–250 (1983).

  12. 12.

    V. V. Belov and E. T. Brook-Levinson, “Clusters of vacancies in crystals: Statistical description,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 6, 91–97 (1983).

  13. 13.

    E. T. Brook-Levinson and O. D. Chernetsov, “Vacancy correlation factor and small clusters of vacancies in an equilibrium crystal,” Phys. Lett.,91A, No. 4, 171–173 (1982).

  14. 14.

    E. T. Brook-Levinson and O. D. Chernetsov, “Statistical theory of vacancy interactions in heavy rare gas crystals,” Fiz. Nizk. Temp.,10, No. 5, 576–584 (1984).

  15. 15.

    L. A. Rott, Statistical Theory of Molecular Systems [in Russian], Nauka, Moscow (1979).

  16. 16.

    Yu. L. Klimontovich, Statistical Physics [in Russian], Nauka, Moscow (1983).

  17. 17.

    E. T. Brook-Levinson, “Self-consistent statistical theory of vacancies in an equilibrium crystal without using the minimum condition on the thermodynamic potential,” Dokl. Akad. Nauk BSSR,25, No. 12, 1085–1088 (1981).

  18. 18.

    E. T. Brook-Levinson and V. V. Belov, Statistical Theory of Equilibrium Systems at Arbitrary Densities [in Russian], Minsk (1983) (Preprint No. 3, Inst. of Heat and Mass Transfer, Academy of Sciences of the BSSR).

  19. 19.

    V. V. Belov and E. T. Brook-Levinson, “A statistical-mechanical explanation of crystal line structure of the heavier rare gas solids,” Phys. Lett.,80A, No. 4, 314–316 (1980).

  20. 20.

    E. T. Brook-Levinson and V. V. Belov, “Statistical theory of thermodynamic and structural properties of molecular crystals,” Inzh.-Fiz. Zh.,40, No. 1, 126–133 (1980).

  21. 21.

    S. Glesston, K. Leider, and G. Airing, Theory of Absolute Reaction Rates [Russian translation], IL, Moscow (1948).

  22. 22.

    E. H. C. Parker, H. R. Clyde, and B. L. Smith, “Self-diffusion in solid argon,” Phys. Rev.,176, No. 3, 1107–1110 (1968).

  23. 23.

    W. M. Yen and R. E. Norberg, “Nuclear magnetic resonance of Xe129 in solid and liquid xenon,” Phys. Rev.,131, No. 1, 269–275 (1963).

  24. 24.

    A. Berne, G. Boato, and M. De Paz, “Experiments on solid argon,” Nuovo Cimento,46B, No. 2, 182–209 (1966).

  25. 25.

    A. Berne, G. Boato, and M. De Paz, “Self-diffusion coefficient in solid argon,” Nuovo Cimento,24, No. 6, 1179–1181 (1962).

  26. 26.

    D. G. Cowgill and R. E. Norberg, “Pulsed NMR studies of self-diffusion and defect structure in liquid and solid krypton,” Phys. Rev. B,13, No. 7, 2773–2781 (1976).

  27. 27.

    A. V. Chadwick and J. A. Morrison, “Self-diffusion in solid krypton,” Phys. Rev. B,1, No. 6, 2748–2753 (1970).

Download references

Author information

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 48, No. 5, pp. 823–831, May, 1985.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bruk-Levinson, É.T., Chernetsov, O.D. Statistical determination of the coefficient of self-diffusion in a monatomic molecular crystal. Journal of Engineering Physics 48, 602–609 (1985). https://doi.org/10.1007/BF01840730

Download citation

Keywords

  • Argon
  • Statistical Physic
  • Xenon
  • Statistical Theory
  • Transport Phenomenon