Algorithmica

, Volume 1, Issue 1–4, pp 395–407

A modification of karmarkar's linear programming algorithm

  • Robert J. Vanderbei
  • Marc S. Meketon
  • Barry A. Freedman
Article

Abstract

We present a modification of Karmarkar's linear programming algorithm. Our algorithm uses a recentered projected gradient approach thereby obviatinga priori knowledge of the optimal objective function value. Assuming primal and dual nondegeneracy, we prove that our algorithm converges. We present computational comparisons between our algorithm and the revised simplex method. For small, dense constraint matrices we saw little difference between the two methods.

Key words

Linear programming Karmarkar's algorithm Projected gradient methods Least squares 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. V. Atkinson and P. J. Harley,An Introduction to Numerical Methods with Pascal, Addison-Wesley, Reading, MA, 1983.MATHGoogle Scholar
  2. [2]
    E. R. Barnes, A variation on Karmarkar's algorithm for solving linear programming problems, Manuscript, IBM T. J. Watson Research Center, Yorktown Heights, NY, 1985.Google Scholar
  3. [3]
    T. M. Cavalier and A. L. Soyster, Some computational experience and a modification of the Karmarkar algorithm, ISME Working Paper 85–105, The Pennsylvania State University, 1985.Google Scholar
  4. [4]
    V. Chvátal,Linear Programming, Freeman, New York and San Francisco, 1983.MATHGoogle Scholar
  5. [5]
    S. C. Eisenstat, Efficient implementation of a class of preconditioned conjugate gradient methods,SIAM J. Sci. Statist. Comput.,2 (1985), 4–7.Google Scholar
  6. [6]
    N. Karmarkar, A new polynomial-time algorithm for linear programming,Combinatorica,4 (1984), 373–395.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    L. S. Lasdon,Optimization Theory for Large Systems, Macmillan, New York, 1970.MATHGoogle Scholar
  8. [8]
    N. Megiddo, A variation on Karmarkar's algorithm, Manuscript, IBM Research Laboratory, San Jose, CA, 1985.Google Scholar
  9. [9]
    M. J. Todd and B. P. Burrell, An extension of Karmarkar's algorithm for linear programming using dual variables, Technical Report No. 648, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, 1985.Google Scholar
  10. [10]
    J. A. Tomlin, An experimental approach to Karmarkar's projective method for linear programming, Manuscript, Ketron Inc., Mountain View, CA, 1985.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Robert J. Vanderbei
    • 1
  • Marc S. Meketon
    • 1
  • Barry A. Freedman
    • 1
  1. 1.AT&T Bell LaboratoriesHolmdelUSA

Personalised recommendations