Journal of Soviet Mathematics

, Volume 47, Issue 2, pp 2473–2488

Separation of variables in the Gaudin model

  • E. K. Sklyanin
Article

Abstract

We separate variables for the Gaudin model (degenerate case of an integrable quantum magnet SU(2) -chain) by means of an explicit change of coordinates. We get a description of the space of states in the language of ideals in polynomial rings. The structure of the eigenfunctions is studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. Gaudin, “Modèles exacts in mécanique statistique: la méthode de Bethe et ses généralisations,” Note CEA 1559 (1)-(1972) et 1559 (2)-(1973). CEN-Saclay.Google Scholar
  2. 2.
    M. Gaudin, “Diagonalisation d'une classe d'Hamiltoniens de spin,” J. Physique,37, No. 10, 1087–1098 (1976).Google Scholar
  3. 3.
    M. Gaudin, La Fonction d'Onde de Bethe, Masson, Paris (1983).Google Scholar
  4. 4.
    L. D. Faddeev, Integrable models in 1+1 dimensions,” in: J.-B. Zuber and R. Stora (eds.), Les Houches Lectures (1982), North-Holland (1984), pp. 719–756.Google Scholar
  5. 5.
    P. P. Kulish and E. K. Sklyanin, “The quantum spectral transform method. Recent developments,” Lect. Notes Phys.,151, 61–119 (1982).Google Scholar
  6. 6.
    M. A. Semenov-Tyan-Shankii, “Classical ζ -matrices and quantization,” J. Sov. Math.,31, No. 6 (1985).Google Scholar
  7. 7.
    A. G. Izergin and V. E. Korepin, “The quantum inverse scattering method approach to correlation functions,” Commun. Math. Phys.,94, No. 1, 67–92 (1984).CrossRefGoogle Scholar
  8. 8.
    E. K. Sklyanin, “Goryachev-Chaplygin top and the method of the inverse scattering problem,” J. Sov. Math.,31, No. 6 (1985).Google Scholar
  9. 9.
    E. K. Sklyanin, “The quantum Toda chain,” Lect. Notes Physics,226, 196–233 (1985).Google Scholar
  10. 10.
    I. R. Shafarevich, “Fundamental concepts of algebra,” in: Current Problems of Mathematics. Fundamental Directions [in Russian], Vol. 11, Itogi Nauki i Tekhniki VINITI AN SSSR, Moscow (1985), pp. 5–288.Google Scholar
  11. 11.
    V. O. Tarasov, “Irreducible monodromy matrices for the R-matrix of the XXZ-model and lattice local quantum Hamiltonians,” Teor. Mat. Fiz.,63, No. 1, 175–196 (1985).Google Scholar
  12. 12.
    V. I. Smirnov, Course of Higher Mathematics [in Russian], Vol. 3, Part 2, Nauka, Moscow (1974).Google Scholar
  13. 13.
    L. V. Avdeev and A. A. Vladimirov, “Exceptional solutions of the equations of the Bethe-Ansatz,” Teor. Mat. Fiz.,69, No. 2, 163–174 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • E. K. Sklyanin

There are no affiliations available

Personalised recommendations