Separation of variables in the Gaudin model
Article
- 446 Downloads
- 148 Citations
Abstract
We separate variables for the Gaudin model (degenerate case of an integrable quantum magnet SU(2) -chain) by means of an explicit change of coordinates. We get a description of the space of states in the language of ideals in polynomial rings. The structure of the eigenfunctions is studied.
Keywords
Polynomial Ring Degenerate Case Quantum Magnet Integrable Quantum Gaudin Model
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
Literature cited
- 1.M. Gaudin, “Modèles exacts in mécanique statistique: la méthode de Bethe et ses généralisations,” Note CEA 1559 (1)-(1972) et 1559 (2)-(1973). CEN-Saclay.Google Scholar
- 2.M. Gaudin, “Diagonalisation d'une classe d'Hamiltoniens de spin,” J. Physique,37, No. 10, 1087–1098 (1976).Google Scholar
- 3.M. Gaudin, La Fonction d'Onde de Bethe, Masson, Paris (1983).Google Scholar
- 4.L. D. Faddeev, Integrable models in 1+1 dimensions,” in: J.-B. Zuber and R. Stora (eds.), Les Houches Lectures (1982), North-Holland (1984), pp. 719–756.Google Scholar
- 5.P. P. Kulish and E. K. Sklyanin, “The quantum spectral transform method. Recent developments,” Lect. Notes Phys.,151, 61–119 (1982).Google Scholar
- 6.M. A. Semenov-Tyan-Shankii, “Classical ζ -matrices and quantization,” J. Sov. Math.,31, No. 6 (1985).Google Scholar
- 7.A. G. Izergin and V. E. Korepin, “The quantum inverse scattering method approach to correlation functions,” Commun. Math. Phys.,94, No. 1, 67–92 (1984).CrossRefGoogle Scholar
- 8.E. K. Sklyanin, “Goryachev-Chaplygin top and the method of the inverse scattering problem,” J. Sov. Math.,31, No. 6 (1985).Google Scholar
- 9.E. K. Sklyanin, “The quantum Toda chain,” Lect. Notes Physics,226, 196–233 (1985).Google Scholar
- 10.I. R. Shafarevich, “Fundamental concepts of algebra,” in: Current Problems of Mathematics. Fundamental Directions [in Russian], Vol. 11, Itogi Nauki i Tekhniki VINITI AN SSSR, Moscow (1985), pp. 5–288.Google Scholar
- 11.V. O. Tarasov, “Irreducible monodromy matrices for the R-matrix of the XXZ-model and lattice local quantum Hamiltonians,” Teor. Mat. Fiz.,63, No. 1, 175–196 (1985).Google Scholar
- 12.V. I. Smirnov, Course of Higher Mathematics [in Russian], Vol. 3, Part 2, Nauka, Moscow (1974).Google Scholar
- 13.L. V. Avdeev and A. A. Vladimirov, “Exceptional solutions of the equations of the Bethe-Ansatz,” Teor. Mat. Fiz.,69, No. 2, 163–174 (1986).Google Scholar
Copyright information
© Plenum Publishing Corporation 1989