Algorithmica

, Volume 5, Issue 1–4, pp 561–571 | Cite as

Searching for empty convex polygons

  • David P. Dobkin
  • Herbert Edelsbrunner
  • Mark H. Overmars
Article

Abstract

A key problem in computational geometry is the identification of subsets of a point set having particular properties. We study this problem for the properties of convexity and emptiness. We show that finding empty triangles is related to the problem of determining pairs of vertices that see each other in a star-shaped polygon. A linear-time algorithm for this problem which is of independent interest yields an optimal algorithm for finding all empty triangles. This result is then extended to an algorithm for finding empty convex r-gons (r> 3) and for determining a largest empty convex subset. Finally, extensions to higher dimensions are mentioned.

Key words

Computational geometry Empty convex subsets Analysis of algorithms Combinatorial geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Avis, D., and Rappaport, D., Computing the largest empty convex subset of a set of points,Proc. 1st Ann. ACM Sympos. Comput. Geom., 1985, pp. 161–167.Google Scholar
  2. [2]
    Bárányi, I., and Füredi, Z., Empty simplices in Euclidean space,Canad. Math. Bull,30 (1987), 436–445.MathSciNetGoogle Scholar
  3. [3]
    Chazelle, B., Guibas, L., and Lee, D., The power of geometric duality,BIT,25 (1985), 76–90.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Edelsbrunner, H., and Guibas, L., Topologically sweeping an arrangement,J. Comput. System Sci.,38 (1989), 165–194.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Edelsbrunner, H., O'Rourke, J., and Seidel, R., Constructing arrangements of lines and hyperplanes with applications,SIAM J. Comput.,15 (1986), 341–363.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Erdös, P., Combinatorial problems in geometry and number theory,Proc. Sympos. Pure Math.,34 (1979), 149–162.Google Scholar
  7. [7]
    Harborth, H., Konvex Fünfecke in ebenen Punktmengen,Elem. Math.,33 (1978), 116–118.MATHMathSciNetGoogle Scholar
  8. [8]
    Hershberger, J., Finding the visibility graph of a simple polygon in time proportional to its size,Proc. 3rd Ann. ACM Sympos. Comput. Geom., 1987, pp. 11–20.Google Scholar
  9. [9]
    Horton, J. D., Sets with no empty convex 7-gons,Canad. Math. Bull,26 (1983), 482–484.MATHMathSciNetGoogle Scholar
  10. [10]
    Rung, H. T., Luccio, F., and Preparata, F. P., On finding the maxima of a set of vectors,J. Assoc. Comput. Mach.,22 (1975), 469–476.MathSciNetGoogle Scholar
  11. [11]
    Overmars, M. H., Scholten, B., and Vincent, I., Sets without empty convex 6-gons,Bull EATCS,37 (1989), 160–168.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • David P. Dobkin
    • 1
  • Herbert Edelsbrunner
    • 2
  • Mark H. Overmars
    • 3
  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA
  2. 2.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Computer ScienceUniversity of UtrechtTA UtrechtThe Netherlands

Personalised recommendations