Advertisement

Algorithmica

, Volume 2, Issue 1–4, pp 209–233 | Cite as

Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons

  • Leonidas Guibas
  • John Hershberger
  • Daniel Leven
  • Micha Sharir
  • Robert E. Tarjan
Article

Abstract

Given a triangulation of a simple polygonP, we present linear-time algorithms for solving a collection of problems concerning shortest paths and visibility withinP. These problems include calculation of the collection of all shortest paths insideP from a given source vertexS to all the other vertices ofP, calculation of the subpolygon ofP consisting of points that are visible from a given segment withinP, preprocessingP for fast "ray shooting" queries, and several related problems.

Key words

Triangulation Simple polygon Visibility Shortest paths Ray shooting Computational geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Asano, Efficient algorithms for finding the visibility polygon for a polygonal region with holes, Manuscript, University of California at Berkeley.Google Scholar
  2. [2]
    D. Avis and G. T. Toussaint, An optimal algorithm for determining the visibility of a polygon from an edge,IEEE Trans. Comput.,30 (1981), 910–914.CrossRefMathSciNetGoogle Scholar
  3. [3]
    B. Chazelle, A theorem on polygon cutting with applications,Proceedings of the 23rd IEEE Symposium on Foundations of Computer Science, 1982, pp. 339–349.Google Scholar
  4. [4]
    B. Chazelle and L. Guibas, Visibility and intersection problems in plane geometry,Proceedings of the ACM Symposium on Computational Geometry, 1985, pp. 135–146 (also submitted toDiscrete Comput. Geom.).Google Scholar
  5. [5]
    H. Edelsbrunner, L. Guibas, and J. Stolfi, Optimal point location in monotone subdivisions, Technical Report 2, DEC/SRC, Palo Alto, CA, 1984.Google Scholar
  6. [6]
    H. A. El Gindy, An efficient algorithm for computing the weak visibility polygon from an edge in simple polygons, Manuscript, McGill University, 1984.Google Scholar
  7. [7]
    H. A. El Gindy, Hierarchical decomposition of polygons with applications, Ph.D. Dissertation, School of Computer Science, McGill University, 1985.Google Scholar
  8. [8]
    H. A. El Gindy and D. Avis, A linear algorithm for computing the visibiility polygon from a point,J. Algorithms,2 (1981), 186–197.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    S. Fisk, A short proof of Chvatal's watchman theorem,J. Combin. Theory Ser. B, 24 (1978), 374.CrossRefMathSciNetGoogle Scholar
  10. [10]
    A. Fournier and D. Y. Montuno, Triangulating simple polygons and equivalent problems,ACM Trans. Graphics,3 (1984), 153–174.zbMATHCrossRefGoogle Scholar
  11. [11]
    M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a simple polygon,Inform. Process. Lett.,7 (1978), 175–179.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    R. L. Graham and F. F. Yao, Finding the convex hull of a simple polygon,J. Algorithms,4 (1983), 324–331.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    D. H. Greene and D. E. Knuth,Mathematics for the Analysis of Algorithms, Birkhäuser, Boston, 1982.Google Scholar
  14. [14]
    L. Guibas, E. McCreight, M. Plass, and J. Roberts, A new representation for linear lists,Proceedings of the Ninth ACM Symposium on Theory of Computing, 1977, pp. 49–60.Google Scholar
  15. [15]
    L. Guibas, L. Ramshaw, and J. Stolfi, A kinetic framework for computational geometry,Proceedings of the 24th IEEE Symposium on Foundations of Computer Science, 1983, pp. 100–111.Google Scholar
  16. [16]
    P. T. Highman, The ears of a polygon,Inform. Process. Lett.,15 (1982), 196–198.CrossRefMathSciNetGoogle Scholar
  17. [17]
    S. Huddieston and K. Mehlhorn, A new data structure for representing sorted lists,Acta Inform.,17 (1982), 157–184.CrossRefMathSciNetGoogle Scholar
  18. [18]
    D. Kirkpatrick, Optimal search in planar subdivisions,SIAM J. Comput.,12 (1983), 28–35.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    D. T. Lee, Visibility of a simple polygon,Comput. Vision, Graphics Image Process.,22 (1983) 207–221.zbMATHCrossRefGoogle Scholar
  20. [20]
    D. T. Lee and A. Lin, Computing the visibility polygon from an edge, Manuscript, Northwestern University, 1984.Google Scholar
  21. [21]
    D. T. Lee and F. P. Preparata, Euclidean shortest paths in the presence of rectilinear battiers,Networks,14 (1984), 393–410.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    D. McCallum and D. Avis, A linear algorithm for finding the convex hull of a simple polygon,Inform. Process. Lett.,9 (1979), 201–206.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    K. Mehlhorn,Data Structues and Efficient Algorithms, Vol. I, Springer-Verlag: Berlin, 1984.Google Scholar
  24. [24]
    M. A. Peshkin and A. C. Sanderson, Reachable grasps on a polygon: the convex rope algorithm, Technical Report CMU-RI-TR-85-6, Carnegie-Mellon University, 1985. AlsoIEEE J. Robotics Automat. (1986) (to appear).Google Scholar
  25. [25]
    F. P. Preparata and M. I. Shamos,Computational Geometry, Springer-Verlag, New York, 1985.Google Scholar
  26. [26]
    F. P. Preparata and K. J. Supowit, Testing a simple polygon for monotonicity,Inform. Process. Lett.,12 (1981), 161–164.CrossRefMathSciNetGoogle Scholar
  27. [27]
    D. D. Sleator and R. E. Tarjan, Self-adjusting binary search trees,J. Assoc. Comput. Mach., 32 (1985), 652–686.zbMATHMathSciNetGoogle Scholar
  28. [28]
    S. Suri, Finding minimum link paths inside a simple polygon,Comput. Vision, Graphics Image Process. (1986) (to appear).Google Scholar
  29. [29]
    R. E. Tarjan,Data Structures and Network Algorithme, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathemataics, Philadelphia, PA, 1983.Google Scholar
  30. [30]
    R. E. Tarjan and C. Van Wyk, AnO(n log logn) time algorithm for triangulating simple polygons,SIAM J. Comput. (submitted).Google Scholar
  31. [31]
    G. Toussaint, Shortest path solves edge-to-edge visibility in a polygon, Technical Report SOCS-85.19, McGill University, 1985.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Leonidas Guibas
    • 1
    • 2
  • John Hershberger
    • 1
  • Daniel Leven
    • 3
  • Micha Sharir
    • 3
    • 4
  • Robert E. Tarjan
    • 5
    • 6
  1. 1.Computer Science DepartmentStanford UniversityStanfordUSA
  2. 2.DEC/SRCPalo AltoUSA
  3. 3.School of Mathematical SciencesTel-Aviv UniversityTel AvivIsrael
  4. 4.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  5. 5.Department of Computer SciencePrinceton UniversityPrincetonUSA
  6. 6.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations