Veterinary Research Communications

, Volume 17, Issue 5, pp 353–369 | Cite as

Creatine kinase in the dog: A review

  • M. Aktas
  • D. Auguste
  • H. P. Lefebvre
  • P. L. Toutain
  • J. P. Braun


In the dog, creatine kinase (CK) is mostly present in the skeletal muscles, myocardium, brain and intestine. The MM isoenzyme predominates in muscles and myocardium. In plasma, reference values depend on the technique used and CK-MB accounts for about 30–45% of total CK activity. Sex has no influence on plasma CK activity, which is higher in young dogs than in adults. Plasma CK is elevated after physical exercise. After its release from the cells, CK reaches the plasma mostly via the lymphatic route and then remains in the plasma compartment. It is rapidly cleared with a half-life of about 2 hours. Muscle diseases are the main source of plasma CK elevations: inherited myopathies, malignant hyperthermia, hypothyroidism, vitamin E-selenium deficiency, prolonged decubitus, intramuscular injections, surgery, etc. Plasma CK is also increased in experimental myocardial infarction, for which the dog is an interesting model, allowing quantification of the damage by measuring the total CK activity released.


creatine kinase dog lymph muscle plasma 



adenosine diphosphate


adenosine triphosphate


creatine kinase


Deutsche Gesellschaft für klinische Chemie






Michaelis constant




ribonucleic acid


messenger RNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abendschein, D., Morelli, R.L., Carlson, C.J., Emilson, B. and Rapaport, E., 1981. Creatine kinase MM isoenzyme subtype transformation after coronary artery occlusion in dogs.Circulation,64, (supplement IV), 153Google Scholar
  2. Abendschein, D.R., Morelli, R.L., Carlson, C.J., Emilson, B. and Rapaport, E., 1984. Creatine kinase MM isoenzyme subforms in myocardium, cardiac lymph and blood after coronary artery occlusion in dogs.Cardiovascular Research,18, 690–696Google Scholar
  3. Ahmed, S.A., Williamson, J.R., Roberts, R., Clark, R.E. and Sobel, B.E., 1976. The association of increased plasma MB CPK activity and irreversible ischemic myocardial injury in the dog.Circulation,54, 187–193Google Scholar
  4. Amann, J.F., Tomlinson, J. and Hankison, J.K., 1985. Myotonia in a Chow Chow.Journal of the American Veternary Medical Association,187, 415–417Google Scholar
  5. Aronsohn, M.G., Schunk, K.L., Carpenter, J.L. and King, N.W., 1984. Clinical and pathologic features of thymoma in 15 dogs.Journal of the American Veterinary Medical Association,184, 1355–1361Google Scholar
  6. Auguste, D., 1992. Utilisation pratique de la créatine-kinase plasmatique chez le chien: étapes préanalytiques et analytiques, disposition, valeurs usuelles et variations physiologiques, variations pathologiques et signification diagnostique (Thèse Doctorat Vétérinaire, Toulouse)Google Scholar
  7. Auguste, D., Aktas, M., Fayolle, P., Lefebvre, H.P., Toutain, P.L. and Braun, J.P., 1992. Etude préliminaire de la cinétique plasmatique de la créatine kinase après administration intraveineuse ou intramusculaire chez le chien.Pratique Médicale et Chirurgicale de l'Animal de Compagnie,27, 399–403Google Scholar
  8. Balasz, T., Ohtake, S., Cummings, J.R. and Noble, J.F., 1969. Ventricular extrasystoles induced by epinephrine, nicotine, ethanol and vasopressin in dogs with myocardial lesions.Toxicology and Applied Pharmacology,15, 189–205Google Scholar
  9. Barr, S.C., 1984. Clinical features therapy and epidemiology of tiger snake bite in dogs and cats.Australian Veterinary Journal,61, 208–212Google Scholar
  10. Basson, C.T., Grace, A.M. and Roberts, R., 1985. Enzyme kinetics of a highly purified mitochondrial creatine kinase in comparison with cytosolic forms.Molecular and Cellular Biochemistry,67, 151–159Google Scholar
  11. Bell, R.D., Alexander, G.M., Nguyen, T. and Albin, M.S., 1986. Quantification of cerebral infarct size by creatine kinase BB isoenzyme.Stroke,17, 254–260Google Scholar
  12. Bellucci, D., 1986. Sindrome miotonica in un cane di razza Chow Chow.Bollettino AIVPA,4, 313–318Google Scholar
  13. Billadello, J.J., Roman, D.G., Grace, A.M., Sobel, B.E. and Strauss, A.W., 1985. The nature of post-translational formation of MM creatine kinase isoforms.Journal of Biological Chemistry,260, 14988–14992Google Scholar
  14. Billadello, J.J., Kelly, D.P., Roman, D.G. and Strauss, A.W., 1986. The complete nucleotide sequence of canine brain B creatine kinase mRNA: homology in the coding and 3′ noncoding regions among species.Biochemical and Biophysical Research Communications,138, 392–398Google Scholar
  15. Billadello, J.J., Fontanet, H.L., Strauss, A.W. and Abendschein, D.R., 1989. Characterization of MB creatine kinase isoform conversionin vitro andin vivo in dog.Journal of Clinical Investigation,83, 1637–1643Google Scholar
  16. Bjotvedt, G., Weems, C.W. and Foley, K., 1984. Strenuous exercise may cause health hazards for racing Greyhounds.Veterinary Medicine and Small Animal Clinician,79, 1481–1487Google Scholar
  17. Bolter, C.P. and Critz, J.B., 1974. Changes in plasma enzyme activities elicited by running exercise in the dog.Proceedings of the Society for Experimental Biology and Medicine,145, 1359–1362Google Scholar
  18. Bolter, C.P. and Critz, J.B., 1976a. Changes in thoracic and right duct lymph flow and enzyme content during skeletal muscle stimulation.Archives Internationales de Physiologie et de Biochimie,84, 115–128Google Scholar
  19. Bolter, C.P. and Critz, J.B., 1976b. Plasma enzyme levels in the anaesthetised dog during drainage of thoracic duct lymph.Enzyme,21, 30–38Google Scholar
  20. Bush, B.M., 1991.Interpretation of Laboratory Results for Small Animal Clinicians, (Blackwell Scientific, Oxford), 327–329Google Scholar
  21. Cairns, J.A. and Klassen, G.A., 1977. The effect of propranolol on canine myocardial CPK distribution space and rate of disappearance.Circulation,56, 284–288Google Scholar
  22. Cairns, J.A., Missirlis, E. and Fallen, E.L., 1978. Myocardial infarction size from serial CPK: variability of CPK serum entry ratio with size and model of infarction.Circulation,58, 1143–1153Google Scholar
  23. Calvert, C.A., 1982. Valvular bacterial endocarditis in the dog.Journal of the American Veterinary Medical Association,180, 1080–1084Google Scholar
  24. Cardinet, H.G. cited by Freedland, R.A. and Kramer, J.W., 1970. Use of serum enzymes as aids to diagnosis.Advances in Veterinary Sciences and Comparative Medicine,14, 61–103Google Scholar
  25. Cardinet, H.G., 1989. Skeletal muscle function. In: J.J. Kaneko (ed.),Clinical Biochemistry of Domestic Animals, (Academic Press, San Diego), 462–495Google Scholar
  26. Carlson, C.J., Meister, W., Emilson, B., Sheiner, L.B. and Rapaport, E., 1982. Clearance of serum creatine kinase activity.Cardiovascular Research,16, 66–70Google Scholar
  27. Carpenter, J.L., Roberts, R.M., Harpster, N.K. and King, N.W., 1980. Intestinal and cardiopulmonary forms of parvovirus infection in a litter of pups.Journal of the American Veterinary Medical Association,176, 1269–1273Google Scholar
  28. Chastain, C.B., 1982. Canine hypothyroidism.Journal of the American Veterinary Medical Association,181, 349–353Google Scholar
  29. Clampitt, R.B. and Hart, R.J., 1978. The tissue activities of some diagnostic enzymes in ten mammalian species.Journal of Comparative Pathology,88, 607–621Google Scholar
  30. Clark, G.L., Robison, A.K., Gnepp, D.R., Roberts, R. and Sobel, B.E., 1978. Effects of lymphatic transport of enzyme on plasma creatine kinase time-activity curves after myocardial infarction in dogs.Circulation Research,43, 162–169Google Scholar
  31. Connett, R.J., 1985.In vivo glycolytic equilibria in doggracilis muscle.Journal of Biological Chemistry,260, 3314–3320Google Scholar
  32. Connett, R.J., 1987. Cytosolic pH during a rest-to-work transition in red muscle: application of enzyme equilibria.American Journal of Physiology,63, 2360–2365Google Scholar
  33. Cooper, B.J., Winand, N.J., Stedman, H., Valentine, B.A., Hoffman, E.P., Kunkel, L.M., Scott, M.O., Fischbeck, K.H., Kornegay, J.N., Avery, R.J., Williams, J.R., Schmickel, R.D. and Sylvester, J.E., 1988. The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs.Nature,334, 154–156Google Scholar
  34. Core, D.M., Hoff, E.J. and Milton, J.L., 1983. Hindlimb hyperextension as a result ofToxoplasma gondii polyradiculitis.Journal of the American Animal Hospital Association,19, 713–716Google Scholar
  35. De Toma, G., Marzano, D., Salvatore, P., Cerza, F., De Cesare, E., Giacovazzo, M., Martelletti, P. and Antonucci, M., 1983. Enzymatic and metabolic changes in peripheral serum after superior mesenteric artery ligation in dogs.Italian Journal of Surgical Sciences,13, 269–273Google Scholar
  36. Devries, S.R., Sobel, B.E. and Abendschein, D.R., 1986. Early detection of myocardial reperfusion by assay of plasma MM-creatine kinase isoforms in dogs.Circulation,74, 567–572Google Scholar
  37. DiBartola, S.P. and Tasker, J.B., 1977. Elevated serum creatine phosphokinase: A study of 53 cases and a review of its diagnostic usefulness in clinical veterinary medicine.Journal of the American Animal Hospital Association,13, 744–753Google Scholar
  38. Ehsani, A., Gordon, A.E. and Burton, E.S., 1976. Effects of electrical countershock on serum creatine phosphokinase (CPK) isoenzyme activity.American Journal of Cardiology,37, 12–18Google Scholar
  39. Ellis, A.K., Little, T., Masud, A.R.Z. and Klocke, F.J., 1985. Patterns of myoglobin release after reperfusion of injured myocardium.Circulation,72, 639–647Google Scholar
  40. Farrow, B.R.H. and Malik, R., 1981. Hereditary myotonia in the Chow Chow.Journal of Small Animal Practice,22, 451–465Google Scholar
  41. Fayolle, P., Lefebvre, H. and Braun, J.P., 1992. Effect of incorrect venepuncture on plasma creatine-kinase activity in dog and horse.British Veterinary Journal,148, 161–162Google Scholar
  42. Feola, M. and Glick, G., 1975. Cardiac lymph flow and composition in acute myocardial ischemia in dogs.American Journal of Physiology,229, 44–48Google Scholar
  43. Friedel, R., Bode, R., Trautschold, I. and Mattenheimer, H., 1976. Die Lymphe als Verteilungsraum für Zellenzyme. Verteilung und Transport von Zellenzymen im extrazellulären Raum.Journal of Clinical Chemistry and Clinical Biochemistry,14, 119–128Google Scholar
  44. Geft, I.L., Fishbein, M.C., Ninomiya, K., Hashida, J., Chaux, E., Yano, J., Y-Rit, J., Genov, T., Shell, W. and Ganz, W., 1982. Intermittent brief periods of ischemia have a cumulative effect and may cause myocardial necrosis.Circulation,66, 1150–1153Google Scholar
  45. George, S., Ishikawa, Y. and Roberts, R., 1982. Molecular basis for multiple forms of MM creatine kinase in plasma.Circulation,66, part II, 203 (abstract)Google Scholar
  46. George, S., Ishikawa, Y., Perryman, M.B. and Roberts, R., 1984. Purification and characterization of naturally occurring andin vitro induced multiple forms of MM creatine kinase.Journal of Biological Chemistry,259, 2667–2674Google Scholar
  47. Graeber, G.M., Cafferty, P.J., Reardon, M.J., Curley, C.P. and Harmon, J.W., 1980. Elevations of serum creatine phosphokinase in experimental mesenteric infarction.Surgical Forum,31, 148–150Google Scholar
  48. Graeber, G.M., Cafferty, P.J., Reardon, M.J., Curley, C.P., Ackerman, N.B. and Harmon, J.W., 1981. Changes in serum total creatine phosphokinase (CPK) and its isoenzymes caused by experimental ligation of the superior mesenteric artery.Annals of Surgery,193, 499–505Google Scholar
  49. Greene, C.E., Lorenz, M.D., Munnell, J.F., Prasse, K.W., White, N.A. and Bowen, J.M., 1979. Myopathy associated with hyperadrenocorticism in the dog.Journal of the American Veterinary Medical Association,174, 1310–1315Google Scholar
  50. Greene, C.E., Cook, J.R. and Mahafey, E.A., 1985. Clindamycin for treatment of toxoplasma polymyositis in a dog.Journal of the American Veterinary Medical Association,187, 631–634Google Scholar
  51. Grevel, V., Opitz, M., Steeb, C. and Skrodzki, M., 1993. Myopathie infloge Kaliummangels bie acht Katzen und einem Hund.Berliner und Münchener Tierärtzliche Wochenschrift,106, 20–26Google Scholar
  52. Griffiths, L.R. and Duncan, I.D., 1973. Myotonia in the dog: a report of four cases.Veterinary Record,93, 184–188Google Scholar
  53. Guy, P.S. and Snow, D.H., 1981. Skeletal muscle fibre composition in the dog and its relationship to athletic ability.Research in Veterinary Sciences,31, 244–248Google Scholar
  54. Hargis, A.M., Haupt, K.H., Hegreberg, G.A., Prieur, D.J. and Moore, M.P., 1984. Familial canine dermatomyositis. Initial characterization of the cutaneous and muscular lesions.American Journal of Pathology,116, 234–244Google Scholar
  55. Hargis, A.M., Haupt, K.H., Prieur, D.J. and Moore, M.P., 1985. A skin disorder in three sheepdogs: comparison with familial canine dermatomyositis of Collies.Compendium on Continuing Education for the Practicing Veterinarian,7, 306–315Google Scholar
  56. Hashimoto, H., Grace, A.M., Billadello, J.J., Gross, R.W., Strauss, A.W. and Sobel, B.E., 1984. Nondenaturing quantification of subforms of canine MM creatine kinase isoenzymes (isoforms) and their interconversion.Journal of Laboratory Clinical Medicine,103, 470–484Google Scholar
  57. Hashimoto, H., Abendschein, D.R., Strauss, A.W. and Sobel, B.E., 1985. Early detection of myocardial infarction in conscious dogs by analysis of plasma MM creatine kinase isoforms.Circulation,71, 363–369Google Scholar
  58. Haupt, K.H., Prieur, D.J., Hargis, A.M., Cowell, R.L., McDonald, T.L., Werner, L.L. and Evermann, J.F., 1985. Familial canine dermatomyositis: clinicopathologic, immunologic, and serologic studies.American Journal of Veterinary Research,46, 1870–1875Google Scholar
  59. Heffron, J.J.A., Bomzon, L. and Pattinson, R.A., 1976. Observations on plasma creatine phosphokinase activity in dogs.Veterinary Record,98, 338–340Google Scholar
  60. Heng, M.K., Singh, B.N., Norris, R.N., John, M.B. and Elliot, R., 1976. Relationship between epicardial ST-segment elevation and myocardial ischemic damage after experimental coronary artery occlusion in dogs.Journal of Clinical Investigation,58, 1317–1326Google Scholar
  61. Henry, P.D., Bloor, C.M. and Sobel, B.E., 1970. Increased serum creatine phosphokinase activity in experimental pulmonary embolism.American Journal of Cardiology,26, 151–155Google Scholar
  62. Hermens, W.Th., van der Veen, F.H., Willems, G.M. and Reneman, R.S., 1990. Letter to the editor.Circulation,81, 1719–1720Google Scholar
  63. Hess, J.W., MacDonald, R.P. and Frederick, R.I., 1964. Serum creatine phosphokinase (CPK) activity in disorders of heart and skeletal muscle.Annals of Internal Medicine,61, 1015–1028Google Scholar
  64. Higginson, L.A.J., Beanlands, D.S., Nair, R.C., Temple, V. and Sheldrick, K., 1983. The time course and characterization of myocardial hemorrhage after coronary reperfusion in the anesthetized dog.Circulation,67, 1024–1031Google Scholar
  65. Hill, F.W.G., 1979. Snake bite in dogs.Australian Veterinary Journal,55, 82–85Google Scholar
  66. Hilppö, M., 1986. Some haematological and clinical-chemical parameters of sight hounds (Afghan hound, Saluki and Whippet).Nordiske Veterinaer Medicin,38, 148–155Google Scholar
  67. Hinchcliff, K.W., Olson, J., Crusberg, C., Kenyon, J., Long, R., Royle, W., Weber, W. and Burr, J., 1993. Serum biochemical changes in dogs competing in a long-distance sled race.Journal of the American Veterinary Medical Association,202, 401–405Google Scholar
  68. Hjelms, E., Hansen, B.F., Waldorff, S. and Steiness, E., 1987. Evaluation of increased serum creatine kinase as an indicator of irreversible myocardial damage in dogs.Scandinavian Journal of Cardiovascular Surgery,21, 165–168Google Scholar
  69. Hoffmann, W.E. and Dorner, J.L., 1975. Creatine phosphokinase: current concepts and speculation regarding its use in veterinary medicine.Journal of the American Animal Hospital Association,11, 451–452Google Scholar
  70. Holloway, S.A. and Parry, B.W., 1989. Observations on blood coagulation after snakebite in dogs and cats.Australian Veterinary Journal,66, 364–366Google Scholar
  71. Hørder, M., Elser, R.C., Gerhardt, W., Mathieu, M. and Sampson, E.J., 1991. Approved recommendation on IFCC methods for the measurement of catalytic concentration of enzymes. Part 7. IFCC method for creatine kinase (ATP: creatineN-phosphotransferase, EC Journal of Clinical Chemistry and Clinical Biochemistry,29, 435–456Google Scholar
  72. Ilkiw, J.E., Davis, P.E. and Church, D.B., 1989. Hematologic, biochemical, blood-gas and acid-base values in Greyhounds before and after exercise.American Journal of Veterinary Research,50, 583–586Google Scholar
  73. Ingwall, J.S., 1984. The hypertrophied myocardium accumulates the MB-creatine kinase isoenzyme.European Heart Journal,5 (supplement F), 129–139Google Scholar
  74. Jacobs, R.M., Weiser, M.G., Hall, R.L. and Kowalski, J.J., 1980. Clinopathologic features of canine parvoviral enteritis.Journal of the American Animal Hospital Association,16, 809–814Google Scholar
  75. Jacobs, R.M., Murtaugh, R.J. and DeHoff, W.D., 1985. Review of the clinicopathological findings of acute pancreatitis in the dog: Use of an experimental model.Journal of the American Animal Hospital Association,21, 795–800Google Scholar
  76. Johnson, R.N., Sammel, N.L. and Norris, R.M., 1981. Depletion of myocardial creatine kinase, lactate dehydrogenase, myoglobin and K+ after coronary artery ligation in dogs.Cardiovascular Research,15, 529–537Google Scholar
  77. Johnson, R.N., Neutze, J.M., Kerr, A.R. and Gillain, B., 1983. Serum myoglobin concentration as an index of myocardial damage after cardiac surgery.International Journal of Cardiology,4, 33–47Google Scholar
  78. Jones, B.R., Anderson, L.J., Barnes, G.R.G., Johnstone, A.C. and Juby, W.D., 1977. Myotonia in related Chow Chow dogs.New Zealand Veterinary Journal,25, 217–220Google Scholar
  79. Kaelin, S., Watson, A.D.J. and Church, D.B., 1986. Hypothyroidism in the dog: a retrospective study of sixteen cases.Journal of Small Animal Practice,27, 533–539Google Scholar
  80. Kaspar, L.V. and Norris, W.P., 1977. Serum chemistry values of normal dogs (Beagles): association with age, sex, and family line.Laboratory Animal Sciences,27, 980–985Google Scholar
  81. Keller, P., 1979. Enzymaktivitäten bei kleinen Haus- und Laboratoriumstieren: Organanalysen, Plasmaspiegel und intrazelluläre Verteilung.Kleinterpraxis,24, 51–68Google Scholar
  82. Keller, P., 1981. Enzyme activities in the dog: tissue analysis, plasma values, and intracellular distribution.American Journal of Veterinary Research,42, 575–582Google Scholar
  83. Keller, P. and Freudiger, U., 1984. Enzymaktivitäten im Urin, im Liquor cerebrospinalis, in der Blasengalle, im Speichel und im Ejakulat des Hundes.Kleinterpraxis,29, 15–34Google Scholar
  84. Keller, P. and Wall, M., 1982. Plasma-enzymaktivitäten beim Hund: Enfluss von Alter und Geschlecht.Schweizer Archiv für Tierheilkunde,124, 83–95Google Scholar
  85. Keyl, M.J., Dowell, R.T. and Yunice, A.A., 1980. Comparison of renal and cardiac lymph constituents.Lymphology,13, 158–160Google Scholar
  86. Keyl, M.J., Chang, A.C.K. and Dowell, R.T., 1981. Constituents of lymph from the non-secreting stomach of the dog.Lymphology,14, 118–121Google Scholar
  87. Kikuta, Y. and Onishi, T., 1986. The contribution of intestinal creatine kinase to serum creatine kinase activity and its isoenzymes in dogs.Japanese Journal of Veterinary Sciences,48, 547–551Google Scholar
  88. Kikuta, Y. and Onishi, T., 1987. Creatine kinase and its isoenzymes in dogs (in Japanese).Journal of the Japanese Veterinary Medical Association,40, 26–30Google Scholar
  89. Kirmayer, A.H., Klide, A.M. and Purvance, J.E., 1984. Malignant hyperthermia in a dog: case report and review of the syndrome.Journal of the American Veterinary Medical Association,185, 978–982Google Scholar
  90. Kitagawa, H., Kano, M., Sasaki, Y. and Hirano, Y., 1991. Serum creatine kinase activities in dogs with dirofilariasis.Journal of Veterinary Medicine and Science,53, 569–575Google Scholar
  91. Klein, M.S., Shell, W.E. and Sobel, B.E., 1973. Serum creatine phosphokinase (CPK) isoenzymes after intramuscular injections, surgery, and myocardial infarction. Experimental and clinical studies.Cardiovascular Research,7, 412–418Google Scholar
  92. Knob, M. and Seidl, I., 1980. Creatine kinase and its isoenzymes in dog sera.Clinical Chimica Acta,106, 287–293Google Scholar
  93. Kolc, J., Mrhova, O. and Malek, P., 1979. Effect of mercurascan on the lymphatic transport of enzymes from ischaemic tissues. In: Malek, P. (ed.),Lymphology, Proceedings of the VIth International Congress Prague (Thieme, Stuttgart), 225–226Google Scholar
  94. Kopprasch, S., Orlik, H. and Scheuch, D.W., 1985. Kinetic aspects of enzyme activity changes in blood plasma during canine hemorrhagic shock.Enzyme,34, 122–128Google Scholar
  95. Kornegay, J.N., 1986. Golden retriever myopathy. In: R.W. Kirk (ed.),Current Veterinary Therapy, (W.B. Saunders, Philadelphia), 792–794Google Scholar
  96. Kornegay, J.N., Gorgacz, E.J., Dawe, D.L., Bowen, J.M., White, N.A. and DeBuysscher, E.V., 1980. Polymyositis in dogs.Journal of the American Veterinary Medical Association,176, 431–438Google Scholar
  97. Kornegay, J.N., Tuler, S.M., Miller, D.M. and Levesque, D.C., 1988. Muscular dystrophy in a litter of golden retriever dogs.Muscle and Nerve,11, 1056–1064Google Scholar
  98. Lefebvre, H., 1988. Contribution à l'étude de lamyasthenia gravis chez le chien. (Thèse de Doctorat Vétérinaire, Toulouse)Google Scholar
  99. Lefebvre, H., 1990. Myasthénie grave acquise chez les carnivores domestiques.Le Point Vétérinaire,22, 13–21Google Scholar
  100. Leunis, J.C., 1974. La créatine phosphokinase et les isoenzymes de la LDH dans les plaquettes de l'homme et du chien.Acta Clinica Belgie,29, 132–134Google Scholar
  101. Lewis, H.B. and Rhodes, D.C., 1978. Effects of I.M. injections on serum creatine phosphokinase (CPK) values in dogs.Veterinary Clinical Pathology,7, 11–12Google Scholar
  102. Lindena, J., Küpper, W., Friedel, R. and Trautschold, I., 1979. Lymphatic transport of cellular enzymes from muscle into the intravascular compartment.Enzyme,24, 120–131Google Scholar
  103. Lindena, J., Küpper, W. and Trautschold, I., 1982a. Effect of transient hypoxia in skeletal muscle on enzyme activities in lymph and plasma.Journal of Clinical Chemistry and Clinical Biochemistry,20, 95–102Google Scholar
  104. Lindena, J., Küpper, W. and Trautschold, I., 1982b. Enzymatic composition of canine leg lymph.Enzyme,28, 18–27Google Scholar
  105. Lindena, J., Sommerfeld, U., Höpfel, C., Wolkersdorfer, R. and Trautschold, I., 1983. Enzyme activities in blood cells of man and dogs after separation on a discontinuous Percoll gradient.Enzyme,29, 100–108Google Scholar
  106. Lindena, J., Küpper, W. and Trautschold, I., 1984. Enzyme activities in thoracic duct lymph and plasma of anaesthetized, conscious resting and exercising dogs.European Journal of Applied Physiology,52, 188–195Google Scholar
  107. Lindena, J., Diederichs, F., Wittenberg, H. and Trautschold, I., 1986a. Kinetic of adjustment of enzyme catalytic concentrations in the extracellular space of the man, the dog and the rat.Journal of Clinical Chemistry and Clinical Biochemistry,24, 61–71Google Scholar
  108. Lindena, J., Küpper, W. and Trautschold, I., 1986b. Catalytic enzyme activity concentration in thoracic duct, liver, and intestinal lymph of the dog, the rabbit, the rat and the mouse.Journal of Clinical Chemistry and Clinical Biochemistry,24, 19–33Google Scholar
  109. Lindena, J., Sommerfeld, U., Höpfel, C. and Trautschold, I., 1986c. Catalytic enzyme activity concentration in tissues of man, dog, rabbit, guinea pig, rat and mouse.Journal of Clinical Chemistry and Clinical Biochemistry,24, 35–47Google Scholar
  110. Lindena, J. and Trautschold, I., 1983. Enzymes in lymph: a review.Journal of Clinical Chemistry and Clinical Biochemistry,21, 327–346Google Scholar
  111. Lindena, J. and Trautschold, I., 1986. Catalytic enzyme activity concentration in plasma of man, sheep, dog, cat, rabbit, guinea pig, rat and mouse.Journal of Clinical Chemistry and Clinical Biochemistry,24, 11–18Google Scholar
  112. Lorenz, M.D., Scott, D.W. and Pulley, L.T., 1973. Medical treatment of canine hyperadrenocorticoidism with op'-DDD.Cornell Veterinarian,63, 646–665Google Scholar
  113. Malmberg, P., 1972. Time course of enzyme escape via heart lymph following myocardial infarction in the dog.Scandinavian Journal of Clinical Laboratory Investigation,30, 405–409Google Scholar
  114. Maroko, P.R., Libby, P., Ginks, W.R., Bloor, C.M., Shell, W.E., Sobel, B.E. and Ross, J., 1971. Coronary artery reperfusion; I: Early effects on local myocardial function and the extent of myocardial necrosis.Journal of Clinical Investigation,51, 2710–2716Google Scholar
  115. Mattheeuws, D.R., Verhaeghe, B.J., Borghijs, H. and Comhaire, F., 1990. The significance of alkaline phosphatase activity in dog semen and accessory sex glands.Proceedings of the IVth Congress International Society for Animal Clinical Biochemistry, 171–178Google Scholar
  116. Mehta, H.B., Popovich, B.K. and Dillmann, W.H., 1987. Comparison of creatine kinase M and B subunit, mRNAs and isoenzyme activity in ischemic dog myocardium.Journal of Molecular and Cellular Cardiology,19 (supplement 4), S22.Google Scholar
  117. Mehta, H.B., Popovich, B.K. and Dillmann, W.H., 1988. Ischemia induces changes in the level of mRNAs coding for stress protein 71 and creatine kinase M.Circulation Research,63, 512–517Google Scholar
  118. Michael, L.H., 1981. Cardiac lymph: monitor of myocardial membrane and vascular alterations.Life Sciences,29, 1495–1505Google Scholar
  119. Mickelson, J.K., Carlson, C.J., Kaysen, G.A. and Rapaport, E., 1985. Creatine kinase: purification, characterization, and tissue distribution of the MM subtypes.Clinica Chimica Acta,153, 181–190Google Scholar
  120. Mogelson, S., Davidson, J., Sobel, B.E. and Roberts, R., 1980. The effect of hyperbaric oxygen on infarct size in the conscious animal.European Journal of Cardiology,12, 135–146Google Scholar
  121. Montes, A.M., Gutiérrez-Panizo, C., Garcia-Partida, P. and Prieto, F., 1987. CK-MB, LDH y ASAT en perros de distintas edades con infarto de miocardio.Annales Veterinaria (Murtia),2, 101–108Google Scholar
  122. Moran, M.M., Siegel, R.J., Said, J.W. and Fishbein, M.C., 1985. Demonstration of myoglobin and CK-M in myocardium. Comparison of five fixation methods and three immunohistochemical techniques.Journal of Histochemistry and Cytochemistry,33, 1110–1115Google Scholar
  123. Muller, G.H., Kirk, R.W. and Scott, D.W., 1983.Small Animal Dermatology, 3rd edn. (WB Saunders, Philadelphia), 547–560Google Scholar
  124. Nagai, N., Chiu, C.C., Yamaoki, K., Ohuchi, Y., Ueda, S., Imataka, K. and Yazaki, Y., 1983. Evaluation of methods for estimating infarct size by myosin LC2: comparison with cardiac enzymes.American Journal of Physiology,245, H413-H419Google Scholar
  125. O'Brien, P.J., Forsyth, G.W., Olexson, D.W., Thatte, H.S. and Addis, P.B., 1984. Canine malignant hyperthermia susceptibility: erythrocytic defects, osmotic fragility, glucose-6-phosphate dehydrogenase deficiency and abnormal Ca2+ homeostasis.Canadian Journal of Comparative Medicine,48, 381–389Google Scholar
  126. O'Brien, P.J., Pook, H.A., Britt, B.A., Kalow, B.I., McLaughlin, R.N., Scott, E. and Elliott, M.E., 1990. Canine stress syndrome/malignant hyperthermia susceptibility: calcium-homeostasis defect in muscle and lymphocytes.Research in Veterinary Sciences,48, 124–128Google Scholar
  127. Oostenbroek, R.J., Willems, G.M., Boumans, M.L.L., Soeters, P.B. and Hermens, W.T., 1985. Liver damage as a potential source of error in the estimation of myocardial infarct size from plasma creatine kinase activity.Cardiovascular Research,19, 113–119Google Scholar
  128. Otsu, N., Hirata, M., Tuboi, S. and Miyazawa, K., 1989. Immunocytochemical localization of creatine kinase M in canine myocardial cells: most creatine kinase M is distributed in the A-band.Journal of Histochemistry and Cytochemistry,37, 1465–1470Google Scholar
  129. Panciera, D.L., 1990. Canine hypothyroidism. Part I. Clinical findings and control of thyroid hormone secretion and metabolism.Compendium on Continuing Education for the Practicing Veterinarian,12, 689–697Google Scholar
  130. Payrière, M., Lefebvre, H. and Braun, J.P., 1991. Effets du délai avant centrifugation et de l'hémolyse sur l'activité de la créatine kinase plasmatique chez le cheval et le chien.Revue de Médecine Vétérinaire,142, 749–751Google Scholar
  131. Perryman, M.B., Strauss, A.W., Buettner, T.L. and Roberts, R., 1983. Molecular heterogeneity of creatine kinase isoenzymes.Biochimica et Biophysica Acta,747, 284–290Google Scholar
  132. Perryman, M.B., Knell, J.D. and Roberts, R., 1984a. Molecular mechanism for the production of multiple forms of MM creatine kinase.Experimentia,40, 1275–1277Google Scholar
  133. Perryman, M.B., Knell, J.D. and Roberts, R., 1984b. Carboxypeptidase-catalyzed hydrolysis of C-terminal lysine: mechanism forin vivo production of multiple forms of creatine kinase in plasma.Clinical Chemistry,30, 662–664Google Scholar
  134. Preus, M., Karsten, B. and Bhargava, A.S., 1989. Serum isoenzyme pattern of creatine kinase and lactate dehydrogenase in various animal species.Journal of Clinical Chemistry and Clinical Biochemistry,27, 787–790Google Scholar
  135. Rapaport, E., 1975. The fractional disappearance rate of the separate isoenzymes of creatine phosphokinase in the dog.Cardiovascular Research,9, 473–477Google Scholar
  136. Ready, A.E. and Morgan, G., 1984. The physiological response of Siberian Husky dogs to exercise: effect of interval training.Canadian Veterinary Journal,25, 86–91Google Scholar
  137. Roberts, R. and Grace, A.M., 1980. Purification of mitochondrial creatine kinase.Journal of Biological Chemistry,255, 2870–2877Google Scholar
  138. Roberts, R. and Ishikawa, Y., 1983. Enzymatic estimation of infarct size during reperfusion.Circulation,68 (supplement 1), 83–89Google Scholar
  139. Roberts, R. and Sobel, B.E., 1977. Effect of selected drugs and myocardial infarction on the disappearance of creatine kinase from the circulation in conscious dogs.Cardiovascular Research,11, 103–112Google Scholar
  140. Roberts, R., Henry, P.D. and Sobel, B.E., 1975. An improved basis for enzymatic estimation of infarct size.Circulation,52, 743–754Google Scholar
  141. Roe, C.R. and Starmer, C.F., 1975. A sensitivity analysis of enzymatic estimation of infarct size.Circulation,52, 1–5Google Scholar
  142. Roe, C.R., Cobb, F.R. and Starmer, C.F., 1977. The relationship between enzymatic and histologic estimates of the extent of myocardial infarction in conscious dogs with permanent coronary occlusion.Circulation,55, 438–449Google Scholar
  143. Roman, D., Billadello, J., Gordon, J., Grace, A., Sobel, B. and Strauss, A., 1985. Complete nucleotide sequence of dog heart creatine kinase mRNA: conservation of amino acid sequence within and among species.Proceedings of the National Academy of Sciences USA,82, 8394–8398Google Scholar
  144. Rosalki, S.B., 1967. An improved procedure for serum creatine phosphokinase determination.Journal of Laboratory Clinical Medicine,69, 696–705Google Scholar
  145. Saks, V.A., Kupriyanov, V.V., Elizarova, G.V. and Jacobus, W.E., 1980. Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation.Journal of Biological Chemistry,255, 755–763Google Scholar
  146. Sanders, T.M. and Bloor, C.M., 1975. Effects of endurance exercise on serum enzyme activities in the dog, pig and man.Proceedings of the Society for Experimental Biology and Medicine,148, 823–828Google Scholar
  147. Schmidt, R.E. and Booker, J.L., 1982. Effect of different surgical stresses on hematological and blood chemistry values in dogs.Journal of the American Animal Hospital Association,18, 758–762Google Scholar
  148. Schole, J., Sallmann, H.P., Brass, W., Kersten, U., Schütt, I., Delbrück, A., Trautwein, G., Messow, C., Amtsberg, G., Kirchhoff, H., Döhler, K.D. and Rapp, K.G., 1982. Experimentelle Untersuchunzen zum Bindegewebsstoffwechsel des Hundes bei unterschiedlichen Haltungs und Fütterungs-Bedingungen, unter besonderer Berücksichtigung der Endokardiose.Zentralblatt für Veterinär Medizin,29, 253–270Google Scholar
  149. Shell, W.E., Kjekshus, J.K. and Sobel, B.E., 1971. Quantitative assessment of the extent of myocardial infarction in the conscious dog by means of analysis of serial changes in serum creatine phosphokinase activity.Journal of Clinical Investigation,50, 2614–2625Google Scholar
  150. Shell, W.E., Lavelle, J.F., Covell, J.W. and Sobel, B.E., 1973. Early estimation of myocardial damage in conscious dogs and patients with evolving acute myocardial infarction.Journal of Clinical Investigation,52, 2579–2590Google Scholar
  151. Shires, P.K., Nafe, L.A. and Hulse, D.A., 1983. Myotonia in a Staffordshire Terrier.Journal of the American Veterinary Medical Association,183, 229–232Google Scholar
  152. Simpson, S.T. and Braund, K.G., 1985. Myotonic dystrophy-like disease in a dog.Journal of the American Veterinary Medical Association,186, 495–498Google Scholar
  153. Singer, U. and Kraft, H., 1989. Biologische Rhythmen beim Hund.Kleintierpraxis,34, 167–174Google Scholar
  154. Sneddon, J.C., Minnaar, P.P., Grosskopf, J.F.W. and Groeneveld, H.T., 1989. Physiological and blood biochemical responses to submaximal treadmill exercise in Canaan dogs before, during and after training.Journal of the South African Veterinary Association,60, 87–91Google Scholar
  155. Snow, D.H. and Watson, D.J., 1973. The acute toxicity of dichlorvos in the dog: 1. Clinical observations and clinical pathology.Australian Veterinary Journal,49, 113–119Google Scholar
  156. Snow, D.H., Harris, R.C. and Stuttard, E., 1988. Changes in haematology and plasma biochemistry during maximal exercise in greyhounds.Veterinary Record,123, 487–489Google Scholar
  157. Sobel, B.E., Markham, J., Karlsberg, R.P. and Roberts, R., 1977. The nature of disappearance of creatine kinase from the circulation and its influence on enzymatic estimation of infarct size.Circulation Research,41, 836–844Google Scholar
  158. Sobel, B.E., Roberts, R. and Larson, K.B., 1976. Estimation of infarct size from serum MB creatine phosphokinase activity: applications and limitations.American Journal of Cardiology,37, 474–485Google Scholar
  159. Sottiaux, J., 1986. Cardiomyopathie dilatée chez un chien.Le Point Vétérinaire,18, 591–600Google Scholar
  160. Steiss, J.E. and Forsyth, G., 1984. Effect of electromyography on serum creatine kinase values in clinically normal dogs and horses.American Journal of Veterinary Research,45, 1199–1200Google Scholar
  161. Stolle, D. and Rick, W., 1976. An improved method for the determination of creatine kinase activity in serum.Journal of Clinical Chemistry and Clinical Biochemistry,14, 239–244Google Scholar
  162. Swain, J.L., Cobb, F.R., McHale, P.A. and Roe, C.R., 1980. Nonlinear relationship between creatine kinase estimates and histologic extent of infarction in conscious dogs: effects of regional myocardial blood flow.Circulation,62, 1239–1247Google Scholar
  163. Takahashi, K. and Kako, K.J., 1983. The effect of a calcium channel antagonist, Nisoldipine, on the ischemia-induced change of canine sarcolemmal membrane.Basic Research in Cardiology,78, 326–337Google Scholar
  164. Taylor, K.M., Devlin, B.J., Mittra, S.M., Gillan, J.G., Brannan, J.J. and McKenna, J.M., 1980. Assessment of cerebral damage during open-heart surgery. A new experimental model.Scandinavian Journal of Thoracic and Cardiovascular Surgery,14, 197–203Google Scholar
  165. Teske, R.H., Bishop, S.P., Righter, H.F. and Detweiler, D.K., 1976. Subacute digoxin toxicosis in the Beagle Dog.Toxicology and Applied Pharmacology,35, 283–301Google Scholar
  166. Thompson, J.S., Bragg, L.E. and West, W.W., 1990. Serum enzyme levels during intestinal ischemia.Annals of Surgery,211, 369–373Google Scholar
  167. Vaagenes, P., Safar, P., Diven, W., Moossy, J., Rao, G., Cantadore, R. and Kelsey, S., 1988. Brain enzyme levels in CSF after cardiac arrest and resuscitation in dogs: markers of damage and predictors of outcome.Journal of Cerebral Blood Flow and Metabolism,8, 262–275Google Scholar
  168. Valentine, B.A., Cooper, B.J., Cummings, J.F. and de Lahunta, A., 1986. Progressive muscular dystrophy in a golden retriever dog: light microscope and ultrastructural features at 4 and 8 months.Acta Neuropathologica,71, 301–310Google Scholar
  169. Valentine, B.A., Cooper, B.J., de Lahunta, A., O'Quinn, R. and Blue, J.T., 1988. Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies.Journal of Neurological Sciences,88, 69–81Google Scholar
  170. Valentine, B.A., Blue, J.T. and Cooper, B.J., 1989. The effect of exercise on canine dystrophic muscle.Annals of Neurology,26, 588Google Scholar
  171. Valentine, B.A., Blue, J.T., Shelley, S.M. and Cooper, B.J., 1990. Increased serum alanine aminotransferase activity associated with muscle necrosis in the dog.Journal of Veterinary Internal Medicine,4, 140–143Google Scholar
  172. Van Vleet, J.F., 1975. Experimentally induced vitamin E-selenium deficiency in the growing dog.Journal of the American Veterinary Medical Association,166, 769–774Google Scholar
  173. Visser, M.P., Krill, M.T.A., Willems, G.M. and Hermens, W.T.H., 1982. Plasma volume determination by use of enzyme dilution in the dog.Laboratory Animals,16, 248–255Google Scholar
  174. Wilson, J.W., 1976. Serum creatine phosphokinase in the canine.Journal of the American Animal Hospital Association,12, 522–524Google Scholar
  175. Wilson, J.W. and Stevens, J.B., 1977. Effects of blood contamination on cerebrospinal fluid analysis.Journal of the American Veterinary Medical Association,171, 256–258Google Scholar
  176. Wilson, J.W. and Wiltrout, S.K., 1976. Cerebrospinal fluid creatine phosphokinase in the normal dog.American Journal of Veterinary Research,37, 1099–1100Google Scholar
  177. Wolford, S.T., Schroer, R.A., Gohs, F.X., Gallo, P.P., Brodeck, M., Falk, H.B. and Ruhren, R., 1986. Reference range data base for serum chemistry and hematology values in laboratory animals.Journal of Toxicology and Environmental Health,18, 161–188Google Scholar
  178. Yasuda, J. and Too, K., 1983. Studies on serum creatine phosphokinase isoenzyme. Seven cases of tetraplegia in the dog.Japanese Journal of Veterinary Research,31, 115–123Google Scholar
  179. Zink, W., 1978. Die Veränderung der Aktiväten muskelspezifischer Enzyme im Serum im Zusammenhang mit der intramuskulären Verabreichung von Medikamenten bei Hunden (Inaugural Dissertation, Tierärztliche Hochschule, Munich)Google Scholar

Copyright information

© Kluwer Academic Publishers bv 1993

Authors and Affiliations

  • M. Aktas
    • 1
  • D. Auguste
    • 1
  • H. P. Lefebvre
    • 1
  • P. L. Toutain
    • 1
  • J. P. Braun
    • 1
  1. 1.Department of Physiopathology and URA INRA Experimental Physiopathology and ToxicologyEcole Nationale VétérinaireToulouse CedexFrance

Personalised recommendations