Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Comparisons between best polynomial approximations and interpolating polynomials

This is a preview of subscription content, log in to check access.


  1. [1]

    Berstein, S. N.,Quelques remarques sur l'interpolation, Krakov, Comm. Math. Assoc., 1916.

  2. [2]

    Clenshaw, C. W.,A Comparison of Best Polynomial Approximations with Truncated Chebyshev Series Expansions, SIAM J. Numer. Anal.1, 26–37 (1964).

  3. [3]

    Clenshaw, C. W. andHayes, J. G.,Curve and Surface Fitting, J. Inst. Math. Appl.1, 164–172 (1965).

  4. [4]

    Lebesgue, H.,Sur les integrales singulières, Ann. de Toulouse1, 25–117 (1909).

  5. [5]

    Mason, J. C.,Orthogonal Polynomial Approximation Methods in Numerical Analysis [Approximation Theory], A. Talbot, Ed., Academic Press, London, 1970.

  6. [6]

    Powell, M. J. D.,On the Maximum Errors of Polynomial Approximations Defined by Interpolation and by Least Squares Criteria, Comput. J.9, 404–407 (1967).

  7. [7]

    Rivlin, T. J.,Chebyshev Expansions and Best Uniform Approximation, IBM Research Report R2-93 (1962).

  8. [8]

    Shampine, L. F.,Efficiency of a Procedure for Near-minimax Approximation, J. Assoc. Comput. Mach.17, 655–660 (1970).

  9. [9]

    Natanson, I. P.,Constructive Function Theory, Ungar, New York, 1965.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Johnson, L.W. Comparisons between best polynomial approximations and interpolating polynomials. Aeq. Math. 12, 152–155 (1975).

Download citation

AMS Primary Subject Classifications

  • 41A05
  • 41A50