aequationes mathematicae

, Volume 43, Issue 2–3, pp 248–263 | Cite as

The bestL2-approximation by finite sums of functions with separable variables

  • Jaromír Šimša
Research Papers

Summary

We consider the problem of the best approximation of a given functionh ∈ L2(X × Y) by sumsk=1nfkfk, with a prescribed numbern of products of arbitrary functionsfkL2(X) andgkL2(Y). As a co-product we develop a new proof of the Hilbert—Schmidt decomposition theorem for functions lying inL2(X × Y).

AMS (1980) subject classification (1985 revision)

41A50 41A30 46E30 45P05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Rudin, W.,Real and complex analysis. McGraw-Hill, Inc., New York, 1974.Google Scholar
  2. [2]
    Taylor, A. E.,Introduction to functional analysis. John Wiley & Sons, Inc., New York, 1967.Google Scholar
  3. [3]
    Čadek, M. andŠimša, J.,Decomposable functions of several variables. Aequationes Math.40 (1990), 8–25.Google Scholar
  4. [4]
    Čadek, M. andŠimša, J.,Decomposition of smooth functions of two multidimensional variables. Czechoslovak Math. J.41 (1991), 342–358.Google Scholar
  5. [5]
    Gauchman, H. andRubel, L. A.,Sums of products of functions of x times functions of y. Linear Algebra Appl.125 (1989), 19–63.Google Scholar
  6. [6]
    Neuman, F.,Factorizations of matrices and functions of two variables. Czechoslovak Math. J.32(107) (1982), 582–588.Google Scholar
  7. [7]
    Neuman, F., Functions of the form ∑i=1Nfi(x)gi(t) in L2. Arch. Math. (Brno)18 (1982), 19–22.Google Scholar
  8. [8]
    Neuman, F.,Finite sums of products of functions in single variables. Linear Algebra Appl.134 (1990), 153–164.Google Scholar
  9. [9]
    Rassias, T. M.,A criterion for a function to be represented as a sum of products of factors. Bull. Inst. Math. Acad. Sinica14 (1986), 377–382.Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • Jaromír Šimša
    • 1
  1. 1.Mathematical Institute of ČSAVBrnoCzechoslovakia

Personalised recommendations