Advertisement

aequationes mathematicae

, Volume 12, Issue 1, pp 94–107 | Cite as

Partially ordered sets and the rogers-ramanujan identities

  • George E. Andrews
Research Papers

IMP Primary Subject Classification

10A45 

Secondary Subject Classifications

05A17 05A15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Andrews, G. E.,An Analytic Proof of the rogers-Ramanujan-Gordon Identities, Amer, J. Math.88, 844–846 (1966).Google Scholar
  2. [2]
    Andrews, G. E.,On q-Difference Equations for Certain Well-poised Basic Hypergeometric Series, Quart, J. Math.19, (2), 433–447 (1968).Google Scholar
  3. [3]
    Andrews, G. E.,A Generalization of the Classical Partition Theorems, Trans. Amer. Math. Soc.145, 205–221 (1969).Google Scholar
  4. [4]
    Andrews, G. E.,Generalizations of the Durfee Square, J. London Math. Soc.3, (2), 563–570 (1971).Google Scholar
  5. [5]
    Andrews, G. E.,Sieves for Theorems of Euler, Rogers, and Ramanujan [from The Theory of Arithmetic Functions edited by A. A. Gioia and D. L. Goldsmith, Springer- Verlag. Lecture Notes in Mathematics, no. 251], (Springer, New York 1972), pp. 1–20.Google Scholar
  6. [6]
    Andrews, G. E.,Number Theory (W. B. Saunders, Philadelphia 1971).Google Scholar
  7. [7]
    Andrews, G. E.,Partition Identities, Advances in Math.9, 10–51 (1972).CrossRefGoogle Scholar
  8. [8]
    Andrews, G. E.,Sieves in the Theory of Partitions, Amer, J. Math.94, 1214–1230 (1972).Google Scholar
  9. [9]
    Andrews, G. E.,On the Alder Polynomials and a New Generalization of Rogers-Ramanujan Identities (to appear).Google Scholar
  10. [10]
    Bailey, W. N.,Generalized Hypergeometric Series (Stechert-Hafner, N.Y. 1964).Google Scholar
  11. [11]
    Cayley, A.,Note on a Partition-series, Amer. J. Math.6, 63–64 (1884).Google Scholar
  12. [12]
    Gordon, B.,A Combinatorial Generalization of the Rogers-Ramanujan Identities, Amer. J. Math.83, 393–399 (1961).Google Scholar
  13. [13]
    Hardy, G. H. andWright, E. M.,An Introduction to the Theory of Numbers (Oxford Univ. Press, Oxford 1960), 4th ed.Google Scholar
  14. [14]
    Landau, E.,Elementary Number Theory (Chelsea, New York 1966).Google Scholar
  15. [15]
    Ramanujan, S. andRogers, L. J.,Proof of Certain Identities in Combinatory Analysis, Proc. Cambridge Philos. Soc.19, 211–216 (1919).Google Scholar
  16. [16]
    Selberg, A.,Über einige arithmetische Identitäten Avhandlinger Norske Akad., 1936, no. 8.Google Scholar
  17. [17]
    Slater, L. J.,Generalized Hypergeometric Functions (Cambridge Univ. Press, Cambridge 1966).Google Scholar
  18. [18]
    Sylvester, J. J.,A Constructive Theory of Partitions, Arranged in Three Acts, and Interact, and an Exodion, Amer. J. Math.5, 251–330 (1882), [or pp. 1–83 of The Collected Mathematical Papers of James Joseph Sylvester, Vol. 4, Cambridge Univ. Press, Cambridge 1912].Google Scholar

Copyright information

© Birkhäuser-Verlag 1975

Authors and Affiliations

  • George E. Andrews
    • 1
  1. 1.The Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations