aequationes mathematicae

, Volume 46, Issue 1–2, pp 119–142

Eulerian numbers with fractional order parameters

  • P. L. Butzer
  • M. Hauss
Research Papers

Summary

The aim of this paper is to generalize the well-known “Eulerian numbers”, defined by the recursion relationE(n, k) = (k + 1)E(n − 1, k) + (n − k)E(n − 1, k − 1), to the case thatn ∈ ℕ is replaced by α ∈ ℝ. It is shown that these “Eulerian functions”E(α, k), which can also be defined in terms of a generating function, can be represented as a certain sum, as a determinant, or as a fractional Weyl integral. TheE(α, k) satisfy recursion formulae, they are monotone ink and, as functions of α, are arbitrarily often differentiable. Further, connections with the fractional Stirling numbers of second kind, theS(α, k), α > 0, introduced by the authors (1989), are discussed. Finally, a certain counterpart of the famous Worpitzky formula is given; it is essentially an approximation ofxα in terms of a sum involving theE(α, k) and a hypergeometric function.

AMS (1990) subject classification

Primary 11B83, 11B68, 11B37 Secondary 26A33, 33C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abramowitz, M. andStegun, I. A.,Handbook of mathematical functions. Dover Publications, Inc., New York, 1965.Google Scholar
  2. [2]
    Aigner, M.,Kombinatorik I. Springer-Verlag, Berlin, 1975.Google Scholar
  3. [3]
    Butzer, P. L. andHauss, M.,On Stirling functions of the second kind. Stud. Appl. Math.84 (1991), 71–79.Google Scholar
  4. [4]
    Butzer, P. L. andHauss, M.,Stirling functions of first and second kind; some new applications. To appear in “Approximation, Interpolation and Summability”, (Proc. Conf. in honour of Prof. Jakimovski, Research Inst. of Math. Sciences, Bar Ilan University, Tel Aviv, June 4–8, 1990), Israel Mathematical Conference Proceedings, Vol. 4 (1991), Weizmann Press, Israel, pp. 89–108.Google Scholar
  5. [5]
    Butzer, P. L., Hauss, M. andSchmidt, M.,Factorial functions and Stirling numbers of fractional orders. Resultate Math.16 (1989), 16–48.Google Scholar
  6. [6]
    Butzer, P. L. andJunggeburth, J.,On Jackson-type inequalities in approximation theory. In: Proc. First Int. Conf. on General Inequalities I. Eds.: J. Aczél, G. Aumann and E. F. Beckenbach. Birkhäuser, Basel, 1978, pp. 85–114.Google Scholar
  7. [7]
    Carlitz, L.,Eulerian numbers and polynomials. Math. Mag.32 (1959), 247–260.Google Scholar
  8. [8]
    Carlitz, L.,Extended Bernoulli and Eulerian numbers. Duke Math. J.31 (1964), 667–689.CrossRefGoogle Scholar
  9. [9]
    Carlitz, L.,Some numbers related to the Stirling numbers of the first and second kind. Univ. Beograd. Publ. Elektrotechn. Fak. Ser. Mat. Fiz. No. 544-No. 576 (1976), 49–55.Google Scholar
  10. [10]
    Carlitz, L, Kurtz, D. C., Scoville, R. andStackelberg, O. P.,Asymptotic properties of Eulerian numbers. Z. Wahrsch. verw. Gebiete23 (1972), 47–54.CrossRefGoogle Scholar
  11. [11]
    Comtet, L.,Advanced combinatorics. D. Reidel Publishing Company, Dordrecht, 1974. (First published 1970 by Presses Universitaires de France, Paris).Google Scholar
  12. [12]
    Doetsch, G.,Einführung in Theorie und Anwendung der Laplace-Transformation. Birkhäuser, Basel, 1958.Google Scholar
  13. [13]
    Erdélyi, A., Magnus, W., Oberhettinger, F. andTricomi, F. G.,Tables of integral transforms, Vol. II. McGraw-Hill, New York, 1954.Google Scholar
  14. [14]
    Gessel, I. andStanley, R. P.,Stirling polynomials. J. Combin. Theory Ser. A24 (1978), 24–33.CrossRefGoogle Scholar
  15. [15]
    Graham, R. L., Knuth, D. E. andPatashnik, O.,Concrete Mathematics. Addison-Wesley Publishing Company, Reading, Mass., 1989.Google Scholar
  16. [16]
    Hansen, E. R.,A table of series and products. Prentice-Hall, Englewood Cliffs, N.J. 1975.Google Scholar
  17. [17]
    Hensley, D.,Eulerian numbers and the unit cube. Fibonacci Quart.20 (1982), 344–348.Google Scholar
  18. [18]
    Kanold, H.-J.,Über Stirlingsche Zahlen 2. Art. J. Reine Angew. Math.229 (1968), 188–193.Google Scholar
  19. [19]
    Kimber, A. C.,Eulerian numbers and links with some statistical procedures. Utilitas Math.31 (1987), 57–65.Google Scholar
  20. [20]
    Riordan, J.,An introduction to combinatorial analysis. John Wiley & Sons, New York, 1958.Google Scholar
  21. [21]
    Riordan, J.,Combinatorial identities. John Wiley & Sons, New York, 1968.Google Scholar
  22. [22]
    Roman, S.,The umbral calculus. Academic Press, Orlando, FL, 1984.Google Scholar
  23. [23]
    Schoenberg, I. J.,Cardinal Spline Interpolation. CBMS 12. SIAM, Philadelphia, 1973.Google Scholar
  24. [24]
    Schrutka, L. v.,Eine neue Einteilung der Permutationen. Math. Ann.118 (1941), 246–50.CrossRefGoogle Scholar
  25. [25]
    Shanks, E. B.,Iterated sums of powers of the binomial coefficients. Amer. Math. Monthly58 (1951), 404–407.Google Scholar
  26. [26]
    Slater, L. J.,Generalized hypergeometric functions. Cambridge Univ. Press, Cambridge, London and New York, 1966.Google Scholar
  27. [27]
    Worpitzky, J.,Studien über die Bernoullischen und Eulerschen Zahlen. J. Reine Angew. Math.94 (1883), 203–232.Google Scholar
  28. [28]
    Butzer, P. L. andNessel, R. J.,Fourier analysis and approximation. Vol. I:One-Dimensional Theory. Birkhäuser, Basel and Academic Press, New York, 1971.Google Scholar
  29. [29]
    Westphal, U.,An approach to fractional powers of operators via fractional differences. Proc. London Math. Soc. (3)29 (1974), 557–576.Google Scholar
  30. [30]
    Butzer, P. L. andWestphal, U.,An access to fractional differentiation via fractional difference quotients, in: Fractional calculus and its applications. [Lecture Notes in Mathematics, No. 457]. Springer-Verlag, Berlin, 1975, pp. 116–145.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • P. L. Butzer
    • 1
  • M. Hauss
    • 1
  1. 1.Lehrstuhl A für MathematikRWTH AachenAachenGermany

Personalised recommendations