Advertisement

Journal of Mathematical Biology

, Volume 14, Issue 2, pp 153–157 | Cite as

Strange attractors in volterra equations for species in competition

  • A. Arneodo
  • P. Coullet
  • J. Peyraud
  • C. Tresser
Article

Abstract

It is shown that for more than three competing species, Volterra differential equations with “destructive” nonlinear interactions can display numerically complicated asymptotic dynamics.

Key words

Volterra equations Competing species Strange attractor Chaotic behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arneodo, A., Coullet, P., Tresser, C.: Occurrence of strange attractors in three-dimensional Volterra equations. Phys. Lett.79A, 259–263 (1980)Google Scholar
  2. Arneodo, A., Coullet, P., Tresser, C.: Attractors with spiral structure; in preparation (1982)Google Scholar
  3. Coste, J., Peyraud, J., Coullet, P.: Asymptotic behaviors in the dynamics of competing species. SIAM J. Appl. Math.36, 516–543 (1979)CrossRefGoogle Scholar
  4. Henon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys.50, 69–77 (1976)CrossRefGoogle Scholar
  5. Lotka, A. J.: Elements of physical biology. New York: Dover publications 1925Google Scholar
  6. Newhouse, S.: The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. Publ. Math. I.H.E.S.50, 101 (1979)Google Scholar
  7. Shil'nikov, L. P.: A case of the existence of a countable number of periodic motions. Soviet Math. Dokl.6, 163–166 (1965)Google Scholar
  8. Shil'nikov, L. P.: A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type. Math. USSR Sbornik10, 91–102 (1970)Google Scholar
  9. Smale, S.: On the differential equations of species in competition. J. Math. Biology3, 5–7 (1976)CrossRefGoogle Scholar
  10. Tresser, C., Coullet, P., Arneodo, A.: Topological horseshoe and numerically observed chaotic behaviour in the Henon mapping. J. Phys. A. Math. Gen.13, L123-L127 (1980)CrossRefGoogle Scholar
  11. Volterra, V.: Variazione e fluttuazione del numero d'individui in specie animali convinenti. Mem. Accad. Nazionale Lincei (ser 6)2, 31–113 (1926)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • A. Arneodo
    • 1
  • P. Coullet
    • 2
  • J. Peyraud
    • 2
  • C. Tresser
    • 2
  1. 1.Laboratoire de Physique ThéoriqueUniversité de NiceNice CedexFrance
  2. 2.Equipe de Mécanique StatistiqueUniversité de NiceNice CedexFrance

Personalised recommendations