aequationes mathematicae

, Volume 50, Issue 1–2, pp 135–142

Conditional functional equations and orthogonal additivity

  • Luigi Paganoni
  • Jürg Rätz
Survey Papers


Some examples of classes of conditional equations coming from information theory, geometry and from the social and behavioral sciences are presented. Then the classical case of the Cauchy equation on a restricted domain Ω is extensively discussed. Some results concerning the extension of local homomorphisms and the implication “Ω-additivity implies global additivity” are illustrated. Problems concerning the equations[cf(x + y) − af(x) − bf(y) − d][f(x + y) − f(x − f(y)] = 0[g(x + y) − g(x) − g(y)][f(x + y) − f(x) − f(y)] = 0f(x + y) − f(x) − f(y) ∈ V (a suitable subset of the range) are presented.

The consideration of the conditional Cauchy equation is subsequently focused on the case when it makes sense to interpret Ω as a binary relation (orthogonality):f: (X, +, ⊥) → (Y, +);f(x + z) = f(x) + f(z) (∀x, z ∈ Z; xz). A brief sketch on solutions under regularity conditions is given. It is then shown that all regularity conditions can be removed. Finally, several applications (also to physics and to the actuarial sciences) are discussed. In all these cases the attention is focused on open problems and possible extensions of previous results.

AMS (1991) subject classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aczél, J.,A short course on functional equations. D. Reidel Publ. Co., Dordrecht, 1987.Google Scholar
  2. Aczél, J.,Some good and bad characters I have known and where they led. (Harmonic analysis and functional equations). [CMS Conf. Proc., Vol. 1]. AMS, Providence, RI, 1981, p. 184.Google Scholar
  3. Baron, K. andKannappan, Pl.,On the Pexider difference. Fund. Math.134 (1990), 247–254.Google Scholar
  4. Baron, K. andVolkmann, P.,On the Cauchy equation modulo Z. Fund. Math.131 (1988), 143–148.Google Scholar
  5. Baron, K. andVolkmann, P.,On a theorem of van der Corput. Abh. Math. Sem. Univ. Hamburg61 (1991), 189–195.Google Scholar
  6. Benz, W.,Geometrische Transformationen, unter besonderer Berücksichtigung der Lorentztransformationen. BI, Mannheim—Leipzig—Wien—Zürich, 1992.Google Scholar
  7. Borelli Forti, C.,Condizioni di ridondanza per l'equazione funzionale f(k(t) + h(t)) = f(K(t)) + f(h(t)). Stochastica11 (1987), 93–105.Google Scholar
  8. Borelli Forti, C.,Solutions of a non-homogeneous Cauchy equation. Radovi Mat.5 (1989), 213–222.Google Scholar
  9. Borelli Forti, C. andForti, G. L.,On an alternative functional equation in R n. In F. A. N.:Functional analysis, approximation theory and numerical analysis. World Scientific Publ. Co., Singapore, Singapore, 1994, pp. 33–44.Google Scholar
  10. Day, M. M.,Some characterizations of inner-product spaces. Trans. Amer. Math. Soc.62 (1947), 320–337.Google Scholar
  11. Dhombres, J.,Some aspects of functional equations. Section 4.9. Chulalongkorn University Press, Bangkok, 1979.Google Scholar
  12. Drljević, F.,On a functional which is quadratic on A-orthogonal vectors. Publ. Inst. Math. (Beograd) (N.S.)54 (1986), 63–71.Google Scholar
  13. Fenyö, I.,Osservazioni su alcuni teoremi di D. H. Hyers. Istit. Lombardo Accad. Sci. Lett. Rend. A114 (1980), 235–242.Google Scholar
  14. Fenyö, I. andRusconi, D.,Sulle distribuzioni che soddisfano una equazione funzionale. Rend. Sem. Mat. Univ. Politec. Torino39 (1981), 67–76.Google Scholar
  15. Fenyö, I. andPaganoni, L.,Su una equazione funzionale proveniente dalla teoria delle funzioni ellittiche jacobiane. Rend. Mat. Appl. (7)5 (1985), 319–324.Google Scholar
  16. Fenyö, I. andPaganoni, L.,A functional equation which characterizes the jacobian sn(z, k) functions. Rend. Mat. Appl. (7)5 (1985), 387–392.Google Scholar
  17. Fochi, M.,Functional equations in A-orthogonal vectors. Aequationes Math.38 (1989), 28–40.Google Scholar
  18. Forti, G. L.,La soluzione generale dell' equazione funzionale {cf(x + y) − af(x) − bf(y) − d}{f(x + y) − f(x) − f(y)} = 0. Matematiche (Catania)34 (1979), 219–242.Google Scholar
  19. Forti, G. L.,Redundancy conditions for the functional equation f(x + h(x)) = f(x) + f(h(x)). Z. Anal. Anwendungen3 (1984), 549–554.Google Scholar
  20. Forti, G. L.,The stability of homomorphisms and amenability, with applications to functional equations. Abh. Math. Sem. Univ. Hamburg57 (1987), 215–226.Google Scholar
  21. Forti, G. L. andPaganoni, L.,A method for solving a conditional Cauchy equation on abelian groups. Ann. Mat. Pura Appl. (4)127 (1981), 79–99.Google Scholar
  22. Forti, G. L. andPaganoni, L., Ω-additive functions on topological groups. InConstantin Carathéodory: an international tribute. World Scientific Publ. Co., Singapore, 1990, 312–330.Google Scholar
  23. Forti, G. L. andPaganoni, L.,On an alternative Cauchy equation in two unknown functions. Some classes of solutions. Aequationes Math.42 (1991), 271–295.Google Scholar
  24. Ger, R.,On a method of solving of conditional Cauchy equations. Univ. Beograd. Publ. Elektrotechn. Fak. Ser. Mat. Fiz. No.544–576 (1976), 159–165.Google Scholar
  25. Ger, R.,Almost additive functions on semigroups and a functional equation. Publ. Math. Debrecen26 (1979), 219–228.Google Scholar
  26. Gudder, S. andStrawther, D.,Orthogonally additive and orthogonally increasing functions on vector spaces. Pacific J. Math.58 (1975), 427–436.Google Scholar
  27. Gudder, S. andStrawther, D.,A converse of Pythagoras' theorem. Amer. Math. Monthly84 (1977), 551–553.Google Scholar
  28. Heijnen, B. andGoovaerts, M. J.,Additivity and premium calculation principles. Blätter Deutsch. Ges. Versich. Math.17 (1986), 217–223.Google Scholar
  29. James, R. C.,Inner products in normed linear spaces. Bull. Amer. Math. Soc.53 (1947), 559–566.Google Scholar
  30. Jarczyk, W.,On continuous functions which are additive on their graphs. [Grazer Ber., No. 292] Forschungsges., Graz, 1988.Google Scholar
  31. Kuczma, M.,Functional equations on restricted domains. Aequationes Math.18 (1978), 1–34.Google Scholar
  32. Lawrence, J. Orthogonality and additive mappings on normed linear spaces. Colloq. Math.49 (1985), 253–255.Google Scholar
  33. Matkowski, J.,Cauchy functional equation on a restricted domain and commuting functions. InIteration theory and its functional equations. Proceedings, Schloss Hofen 1984. [Lecture Notes in Mathematics, No. 1163], Springer Verlag, Berlin, 1985, pp. 101–106.Google Scholar
  34. Paganoni, L.,On an alternative Cauchy equation. Aequationes Math.29 (1985), 214–221.Google Scholar
  35. Paganoni, L. andPaganoni Marzegalli, S.,Cauchy's functional equation on semigroups. Fund. Math.110 (1980), 63–74.Google Scholar
  36. Paganoni, L. andPaganoni Marzegalli, S.,Holomorphic solutions of an inhomogeneous Cauchy equation. Aequationes Math.37 (1989), 179–200.Google Scholar
  37. Pinsker, A.,Sur une fonctionnelle dans l'espace de Hilbert. C. R. (Doklady) Acad. Sci. URSS N.S.20 (1938), 411–414.Google Scholar
  38. Rätz, J.,On orthogonally additive mappings. Aequationes Math.28 (1985), 35–49.Google Scholar
  39. Rätz, J.,On orthogonally additive mappings, II. Publ. Math. Debrecen35 (1988), 241–249.Google Scholar
  40. Rätz, J.,On orthogonally additive mappings, III. Abh. Math. Sem. Univ. Hamburg59 (1989), 23–33.Google Scholar
  41. Rätz, J.,Orthogonally additive mappings on free product Z-modules. To appear (1995).Google Scholar
  42. Rätz, J. andSzabó, Gy.,On orthogonally additive mappings, IV. Aequationes Math.38 (1989), 73–85.Google Scholar
  43. Sablik, M.,Note on a Cauchy conditional equation. Rad. Mat.1 (1985), 241–245.Google Scholar
  44. Sablik, M.,A functional congruence revisited. Aequationes Math.41 (1991), 273.Google Scholar
  45. Sundaresan, K.,Orthogonality and nonlinear functionals on Banach spaces. Proc. Amer. Math. Soc.34 (1972), 187–190.Google Scholar
  46. Szabó, Gy.,On mappings orthogonally additive in the Birkhoff—James sense. Aequationes Math.30 (1986), 93–105.Google Scholar
  47. Szabó, Gy.,Sesquilinear-orthogonally quadratic mappings. Aequationes Math.40 (1990), 190–200.Google Scholar
  48. Szabó, Gy.,On orthogonality spaces admitting nontrivial even orthogonally additive mappings. Acta Math. Hung.56 (1990), 177–187.Google Scholar
  49. Szabó, Gy.,Continuous orthogonality spaces. Publ. Math. Debrecen38 (1991), 311–322.Google Scholar
  50. Szabó, Gy., Φ-orthogonally additive mappings, I. Acta Math. Hung.58 (1991), 101–111.Google Scholar
  51. Szabó, Gy., Φ-orthogonally additive mappings, II. Acta Math. Hung.59 (1992), 1–10.Google Scholar
  52. Szabó, Gy.,A conditional Cauchy equation on normed spaces. Publ. Math. Debrecen42 (1993), 265–271.Google Scholar
  53. Szabó, Gy.,Isosceles orthogonally additive mappings and inner product spaces. Publ. Math. Debrecen, to appear (1995).Google Scholar
  54. Szabó, Gy.,Pyhtagorean orthogonality and additive mappings. To appear (1996).Google Scholar
  55. Tabor, J.,Cauchy and Jensen equations on a restricted domain almost everywhere. Publ. Math. Debrecen39 (1991), 219–235.Google Scholar
  56. Vajzović, F.,Über das Funktional H mit der Eigenschaft: (x, y) = 0 ⇒ H(x + y) + H(x − y) = 2H(x) + 2H(y). Glasnik Mat. Ser. III2 (22 (1967), 73–81.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Luigi Paganoni
    • 1
    • 2
  • Jürg Rätz
    • 1
    • 2
  1. 1.Dipartimento di MatematicaUniversità di MilanoMilanoItalia
  2. 2.Mathematisches InstitutUniversität BernBernSchweiz

Personalised recommendations