aequationes mathematicae

, Volume 50, Issue 1–2, pp 50–72

Progress of iteration theory since 1981

  • György Targonski
Survey Papers

AMS (1991) subject classification

Primary 39B12 Secondary 26A18, 58F08 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Aczél 49]
    Aczél, J.,Einige aus Funktionalgleichungen zweier Veränderlichen ableitbare Differentialgeichungen. Acta Sci. Math. (Szeged)13 (1949), 179–189.Google Scholar
  2. [Aczél 91]
    Aczél, J.,Remarks on a problem of Gy. Targonski. Report of the 27th ISFE, Poland 1989. Aequationes Math.39 (1990), 314–315.Google Scholar
  3. [Aczél, Gronau 88]
    Aczél, J. andGronau, D.,Some differential equations related to iteration theory. Canad. J. Math.40 (1988), 695–717.Google Scholar
  4. [Aczél, Gronau 881]
    Aczél, J. andGronau, D.,Iteration, translation, commuting and differential equations. In: Gronau, D. and L. Reich (eds),Selected topics in functional equations. [Grazer Math. Bericht Nr. 295], Math.-Stat. Sekt. Forschungsges. Joanneum, Graz, 1988.Google Scholar
  5. [Agnes, Rasetti 88]
    Agnes, C. andRasetti, M.,Complexity, undecidability and chaos: a class of dynamical systems with fractal orbits. In: Livi et al. (eds),Workshop on chaos and complexity, Torino, Oct. 5–11, 1987. World Scientific, Singapore, 1988, pp. 3–25.Google Scholar
  6. [Alsedá, Llibre, Misiurewicz 92]
    Alsedà, LL., Llibre, J. andMisiurewicz, M.,Combinatorial dynamics and entropy in dimension one. World Scientific, Singapore, 1992.Google Scholar
  7. [Alsina et al. 89]
    Alsina, C., Llibre, J., Mira, C., Simó, C., Targonski, Gy. andThibault, R., (eds),ECIT 87, Proc. Europ. Conf. on Iteration Th., Caldes de Malavella, Sept. 20–26, 1987. World Scientific, Singapore, 1989.Google Scholar
  8. [Barnsley 88]
    Barnsley, M.,Fractals everywhere. Academic Press, New York, 1988.Google Scholar
  9. [Bartels 91]
    Bartels, A.,Über iterative Phantomwurzeln von Abbildungen (On iterative phantom roots of mappings). Diploma (M.Sc.) Thesis, Universität Marburg, 1991.Google Scholar
  10. [Blanchard 84]
    Blanchard, P.,Complex analytic dynamics of the Riemann sphere. Bull. Amer. Math. Soc.11 (1984), 95–141.Google Scholar
  11. [Blažková, Chvalina 84]
    Blažková, R. andChvalina, J.,Regularity and transivity of localautomorphism semigroups of locally finite forests. Arch. Math. (Brno) 4, Scripta Fac. Sci. Nat. USEP Brunensis20 (1984), 183–194.Google Scholar
  12. [Böttcher, Heidler 92]
    Böttcher, A. andHeidler, H.,Algebraic composition operators. Integral Equations Operator Theory15 (1992), 390–411.Google Scholar
  13. [Bourlet 97]
    Bourlet, C.,Sur certaines équations analogues aux équations différentielles (On certain equations analogous to differential equations). C.R. Acad. Sci. Paris124 (1978), 1431–1433.Google Scholar
  14. [Bourlet 971]
    Bourlet, C.,Sur les transmutations (On transmutations). Bull. Soc. Math. France25 (1897), 132–140.Google Scholar
  15. [Burkart 82]
    Burkart, U.,Zur Charakterisierung diskreter dynamischer Systeme (On characterization of discrete dynamical systems). Ph.D. Thesis, Universität Marburg, 1982.Google Scholar
  16. [Cap 89]
    Cap, C. H.,Two approaches to the iteration problem of diffeomorphisms. In [Alsina et al. 89], pp. 139–144.Google Scholar
  17. [Cap 91]
    Cap, C. H.,Solving Abel, Jabotinsky and inverse ODE problems. In [Mira et al. 91], pp. 19–28.Google Scholar
  18. [Chvalina, Matoušková 84]
    Chvalina, J. andMatousková, K.,Coregularity of endomorphissm monoids of unars. Arch. Math. (Brno) 1, Scripta Fac. Sci. Nat. USEP Brunensis20 (1984), 43–48.Google Scholar
  19. [Collet, Eckmann 80]
    Collet, P. andEckmann, J. P.,Iterated maps on the interval as dynamical systems. Birkhäuser, Boston, 1980.Google Scholar
  20. [Deslauriers, Dubuc 91]
    Deslauriers, G. andDubuc, S.,Continuous iterative iteration processes. In [Mira et al. 91], pp. 71–78.Google Scholar
  21. [Douady, Hubbard 84/85]
    Douady, A. andHubbard, J.,Etude dynamique de polynômes complexes (Dynamical study of complex polynomials) I, II. [Publ. Math. Orsay 84-02 and 85-04], Univ. d'Orsay, Orsay, 1984–85.Google Scholar
  22. [Dubuc 85]
    Dubuc, S.,Functional equations connected with peculiar curves. In [Liedl et al. 85], pp. 33–40.Google Scholar
  23. [Ecalle 81]
    Ecalle, J.,Les fonctions résurgents (On resurgent functions), vol. 1, 2, [Publ. Math. Orsay], Univ. d'Orsay, Orsay, 1981.Google Scholar
  24. [Ecalle 85]
    Ecalle, J.,Iteration and analytic classification of local diffeomorphisms ofv. In [Liedl et al. 85], pp. 41–48.Google Scholar
  25. [Farmer et al. 85]
    Farmer, D. et al. (eds),Cellular automata. North Holland, Amsterdam, 1985.Google Scholar
  26. [Ferber 85]
    Ferber, R.,Zelluläre Automaten als dynamische Systeme (Cellular automata as dynamical systems). Diploma (M.Sc.) Thesis, Universität Marburg, 1985.Google Scholar
  27. [Ferber 88]
    Ferber, R.,Räumliche und zeitliche Regelmäßigkeiten zellularer Automaten (Spatial and temporal regularities of cellular automata). Ph.D. Thesis, Universität Marburg, 1988.Google Scholar
  28. [Ferber 91]
    Ferber, R.,Cellular automata are the continuous self-mappings of configuration spaces. In [Mira et al. 91], pp. 79–85.Google Scholar
  29. [Ferber et al. 91]
    Ferber, R., Targonski, Gy. andWeitkämper, J.,Fractional-time states of cellular automata. In [Mira et al. 91], pp. 86–106.Google Scholar
  30. [Förg-Rob 85]
    Förg-Rob, W.,The Pilgerschritt transform in Lie algebras. In [Liedl et al. 85], pp. 59–71.Google Scholar
  31. [Förg-Rob 89]
    Förg-Rob, W.,Some results on the Pilgerschritt transform. In [Alsina et al. 89], pp. 198–204.Google Scholar
  32. [Förg-Rob, Netzer 85]
    Förg-Rob, W. andNetzer, N.,Product-integration and one-parameter subgroups of linear Lie groups. In [Liedl et al. 85], pp. 71–82.Google Scholar
  33. [Förg-Rob et al. 94]
    Förg-Rob, W., Gronau, D., Mira, C., Netzer, N. andTargonski, Gy., (eds),Proceedings of ECIT 92, Batschuns (Austria), September 1992. World Scientific, Singapore, 1994.Google Scholar
  34. [Gale 91]
    Gale, D.,Conjectures. Math. Intelligencer13 (1991), 53–55.Google Scholar
  35. [Gardner 70]
    Gardner, M.,Mathematical games. Scientific American, Oct. 1970 and Feb. 1971.Google Scholar
  36. [Graw 82]
    Graw, R.,Über die Orbitstruktur stetiger Abbildungen (On the orbit structure of continuous mappings.). Ph.D. Thesis, Universität Marburg, 1982.Google Scholar
  37. [Graw 84]
    Graw, R.,Compact orbits and periodicity. Nonlinear Anal.8 (1984), 1473–1479.Google Scholar
  38. [Gronau 91]
    Gronau, D.,The Jabotinsky equations and the embedding problem. In [Mira et al. 91], pp. 138–148.Google Scholar
  39. [Gronau 911]
    Gronau, D.,On the structure of the solution of the Jabotinsky equations in Banach spaces. Zeitschr. Anal. Anw.10 (1991), 335–343.Google Scholar
  40. [Gumowski, Mira 80]
    Gumowski, I. andMira, C.,Dynamique chaotique (Chaotic dynamics). Cepadues Editions, Toulouse, 1980.Google Scholar
  41. [Gumowski, Mira 801]
    Gumowski, I. andMira, C.,Recurrences and discrete dynamic systems. [Springer Lecture Notes in Mathematics, Nr. 809], Springer, Berlin, 1980.Google Scholar
  42. [Isaacs 50]
    Isaacs, R.,Iterates of fractional order. Canad. J. Math.2 (1950), 409–416.Google Scholar
  43. [Jabotinsky 55]
    Jabotinsky, E.,Iteration. Ph.D. Thesis, The Hebrew University, Jerusalem, 1955.Google Scholar
  44. [Jabotinsky 63]
    Jabotinsky, E.,Analytic iteration. Trans. Amer. Math. Soc.108 (1963), 457–477.Google Scholar
  45. [Krasner 38]
    Krasner, M.,Une géneralisation de la notion de corps (A generalization of the notion of field). J. Math. Pures Appl.17 (1938), 367–385.Google Scholar
  46. [Krause 88]
    Krause, G., Manuscript, 1988.Google Scholar
  47. [Kuczma, Choczewski, Ger 90]
    Kuczma, M., Choczewski, B. andGer, R.,Iterative functional equations. [Encyclopedia of Mathematics and its Applications, vol. 32], Cambridge University Press, Cambridge, 1990.Google Scholar
  48. [Lagarias 85]
    Lagarias, J. C.,The 3x + 1problem and its generalizations. American Math. Monthly92 (1985), 3–23.Google Scholar
  49. [Lampreia, Sousa Ramos 91]
    Lampreia, J. P. andSousa Ramos, J.,Symbolic dynamics of trimodal maps. In [Mira et al. 91], pp. 184–193.Google Scholar
  50. [Lampreia et al. 93]
    Lampreia, J. P., Llibre, J., Mira, C., Sousa Ramos, J. andTargonski, Gy. (eds),ECIT 91, Proc. Europ. Conf. on Iteration Theory, Lisbon Sep. 15–21, 1991. World Scientific, Singapore, 1993.Google Scholar
  51. [Langenberg 92]
    Langenberg, H.,Zellulare Automaten und Iterationstheorie (Cellular automata and iteration theory). Diploma (M.Sc.) Thesis, Universität Marburg, 1992.Google Scholar
  52. [Liedl 86]
    Liedl, R.,Gruppenwertige Potenzreihen (Group valued power series). Anz. Österreich. Akad. Wiss. Math. Nat. Kl. 1986, No. 5, 57–58.Google Scholar
  53. [Liedl, Netzer 89]
    Liedl, R. andNetzer, N.,Group theoretic and differential geometric methods for solving the translation equation. In [Alsina et al. 89], pp. 240–252.Google Scholar
  54. [Liedl, Netzer 91]
    Liedl, R. andNetzer, N.,Die Lösung der Translationsgleichung mittels schneller Pilgerschrittransformation (Solution of the translation equation by means of the fast Pilgerschritt transformation). [Grazer Ber. Nr. 314], Forschungsinst., Graz, 1991.Google Scholar
  55. [Liedl, Netzer, Reitberger 81]
    Liedl, R., Netzer, N. andReitberger, H.,Eine Methods zur Berechnung von einparametrigen Untergruppen ohne Verwendung des Logarithmus (A method for calculation of one-parameter subgroups without using logarithm). Österreich. Akad. Wiss., Math.-Natur. Kl. Sitzungsberg.II (1981), 273–284.Google Scholar
  56. [Liedl, Netzer, Reitberger 82]
    Liedl, R., Netzer, N. andReitberger, H.,Über eine Methode zur Auffindung stetiger Iterationen in Lie-Gruppen (On a method of finding continuous iteration in Lie groups). Aequationes Math.24 (1982), 19–32.Google Scholar
  57. [Liedl et al. 85]
    Liedl, R., Reich, L. andTargonski, Gy. (eds),Iteration Theory and its functional equations (Proceedings, Schloss Hofen 1984). Springer Lecture Notes in Mathematics Nr. 1163.Google Scholar
  58. [Mandelbrot 82]
    Mandelbrot, B. B.,The fractal geometry of nature. W.H. Freeman, 1982.Google Scholar
  59. [Miller 92]
    Miller, J. B.,Square root of uppertriangular matrices. [Analysis Paper No. 75], Dept. of Math., Monash University, Clayton, Vic., Australia, 1991.Google Scholar
  60. [Mira 79]
    Mira, C.,Frontière floue séparant des domaines d'attraction de deux attracteurs (Vague boundaries separating the domains of attraction of two attractors). C. R. Acad. Sci. Paris299 (1979), A591-A594.Google Scholar
  61. [Mira, Müllenbach 83]
    Mira, C. andMüllenbach, S.,Sur l'itération fractionnaire d'un endomorphisme quasratique (On fractional iteration of a quadratic endomorphism). C. R. Acad. Sci. Paris Sér. I. Math.297 (1983), 369–372.Google Scholar
  62. [Mira et al. 91]
    Mira, C., Netzer, N., Simó, C. andTargonski, Gy. (eds),Proceedings of ECIT 89, European Conference on Iteration Theory, Batschuns, Austria, 10–16 Sept. 1989. World Scientific, Singapore, 1991.Google Scholar
  63. [Netzer 82]
    Netzer, N.,On the convergence of iterated pilgerschritt transforms. Zeszyty Nauk. Uniw. Jagiellon. Prace Mat.23 (1982), 91–98.Google Scholar
  64. [Netzer 92]
    Netzer, N.,The convergence of fast Pilgerschritt transformation. In [Förg-Rob et al. 92].Google Scholar
  65. [Netzer, Liedl 91]
    Netzer, N. andLiedl, R.,Fast Pilgerschritt transformation. In [Mira et al. 91], pp. 279–293.Google Scholar
  66. [Netzer, Reitberger 82]
    Netzer, N. andReitberger, H.,On the convergence of Pilgerschritt transformations in nilpotent Lie groups. Publ. Math. Debrecen29 (1982), 309–314.Google Scholar
  67. [Neuman 82]
    Neuman, F.,Simultaneous solutions of a system of Abel equations and differential equations with several derivations. Czechoslovak Math. J.32 (1982), 488–494.Google Scholar
  68. [Neuman 89]
    Neuman, F.,On iteration groups of certain functions. Arch. Math. (Brno)25 (1989), 185–194.Google Scholar
  69. [Von Neumann 66]
    von Neumann, J.,Theory of self-reproducing automata. University of Illinois, Urbana-London, 1966.Google Scholar
  70. [Peitgen, Richter 86]
    Peitgen, H. O. andRichter, P. H.,The beauty of fractals. Springer, Berlin, 1986.Google Scholar
  71. [Peschl, Reich 71]
    Peschl, E. andReich, L.,Eine Linearisierung kontrahierender biholomorpher Abbildungen und damit zusammenhängender analytischer Differentialgleichungssysteme (A linearization method for contractive biholomorphic maps and for related systems of analytic differential equations). Monatsh. Math.75 (1971), 153–162.Google Scholar
  72. [Reich 71]
    Reich, L.,Über analytische Iteration linearer und kontrahierender biholomorpher Abbildungen (On analytic iteration of linear and contractive biholomorphic mappings). [Bericht Nr. 42] Ges. Math. Datenverarb., Bonn, 1971.Google Scholar
  73. [Reich 79]
    Reich, L. (with the participation of J. Schwaiger),Analytische und fraktionelle Iteration formal-biholomorpher Abbildungen (Analytic and fractional iteration of formal biholomorphic maps). InJahrbuch Überblicke Mathematik 1979, Bibliographisches Institut, Mannheim, 1979, pp. 123–144.Google Scholar
  74. [Reich 85]
    Reich, L.,On a differential equation arising in iteration theory in rings of formal power series in one variable. In [Liedl et al. 85], pp. 135–148.Google Scholar
  75. [Reich 88]
    Reich, L.,On families of commuting formal power series. InSelected topics in functional equations [Grazer Math. Bericht Nr. 294] Math-Stat. Sekkt. Forsch Ges. Joanneum, Graz, 1988, pp. 1–18.Google Scholar
  76. [Reich 89]
    Reich, L.,Die Differentialgleichungen von Aczél—Jabotinsky, von Briot—Bouquet und maximale Familien vertauschbarer Potenzreihen (The differential equations of Aczél—Jabotinsky, of Briot—Bouquet and maximal families of commuting power series). InComplex methods on partial differential equations. [Math. Res. Vol. 53]. Akademie Verlag, Berlin, 1989, pp. 137–150.Google Scholar
  77. [Reich 91]
    Reich, L.,On the embedding problem for formal power series with respect to the Aczél—Jabotinsky equations. In [Mira et al. 91], pp. 294–304.Google Scholar
  78. [Reich 92]
    Reich, L.,On the local distribution of iterable power series transformation in one indeterminate. In:Functional analysis III, Proc. Postgrad School and Conf., Dubrovnik, Oct. 29–Nov. 2 (D Brutkovic et al. eds). [Aarhus Univ. Various Publications Series Nr. 40], Univ., Aarhus, 1992.Google Scholar
  79. [Reich 93]
    Reich, L.,On power series transformations in one indeterminate having iterative roots of a given order and with given multiplier. In [Lampreia et al. 93], pp. 210–216.Google Scholar
  80. [Reich, Schwaiger 80]
    Reich, L. andSchwaiger J.,Linearisierung formal-biholomorpher Abbildungen und Iterationsprobleme. Aequationes Math.20 (1980), 224–243.Google Scholar
  81. [Riggert 75]
    Riggert, G.,n-te iterative Wurzeln von beliebigen Abbildungen (n-th iterative roots of arbitrary sets). InReport of the 1975 International Symposium on Functional Equations. Aequationes Math.15 (1977), 288.Google Scholar
  82. [Robert 86]
    Robert, F.,Discrete iterations. Springer, Berlin, 1986.Google Scholar
  83. [Schleiermacher 93]
    Schleiermacher, A.,On a theorem of Marc Krasner about invariant relations. In [Lampreia et al. 93], pp. 230–240.Google Scholar
  84. [Schwaiger 89]
    Schwaiger, J.,Phantom roots and phantom iterates of formal power series in one variable. In [Alsina et al. 89], pp. 313–323.Google Scholar
  85. [Schwaiger 91]
    Schwaiger, J.,On polynomials having different types of roots. In [Mira et al. 91], pp. 315–319.Google Scholar
  86. [Schweizer, Sklar 88]
    Schweizer, B. andSklar, A.,Invariants and equivalence classes of polynomials under linear conjugacy. InContributions to general algebra, No. 6. Hölder—Pinchler—Tempsky, Vienna and Teubner, Stuttgart, 1988.Google Scholar
  87. [Schweizer, Sklar 90]
    Schweizer, B. andSklar, A.,The baker's transformation is not embeddable. Found. of Phys.20 (1990), 873–897.Google Scholar
  88. [Simon 93]
    Simon, K.,Hausdorff dimensions for certain near-hyperbolic maps. In [Lampreia et al. 93], pp. 253–261.Google Scholar
  89. [Sklar 69]
    Sklar, A.,Canonical decompositions, stable functions, and fractional iterates. Aequationes Math.3 (1969), 118–129.Google Scholar
  90. [Sklar 87]
    Sklar, A.,The structure of one-dimensional flows with continuous trajectories. Rad. Mat.3 (1987), 111–142.Google Scholar
  91. [Skornjakov 77]
    Skornjakov, L. A.,Unars. InUniversal algebra. [Coll. Mat. Soc. János Bolyai 29], J. Bolyai Math. Soc. Budapest, 1977, pp. 735–743.Google Scholar
  92. [Smajdor 85]
    Smajdor, A.,Iteration of multi-valued functions. [Prace Nauk. Uniw. Sląsk. Katowic. No. 759], Silesian Univ. Katowice, 1985.Google Scholar
  93. [Smajdor 89]
    Smajdor, A.,One-parameter families of set-valued contractions. In [Alsina et al. 89].Google Scholar
  94. [Smajdor 93]
    Smajdor, A.,Almost-everywhere set-valued semigroups. In [Lampreia et al. 93], pp. 262–272.Google Scholar
  95. [Smital 88]
    Smítal, J.,On functions and functional equations. Adam Hilger, Bristol—Philadelphia, 1988.Google Scholar
  96. [Snowden, Howie 82]
    Snowden, M. andHowie, J. M.,Square roots in finite full transformation semigroups. Glasgow Math. J.23 (1982), 137–149.Google Scholar
  97. [Targonski 67]
    Targonski, Gy.,Seminar on functional operators and equations. [Springer Lecture Notes in Mathematics, No. 33], Springer, Berlin, 1967.Google Scholar
  98. [Targonski 81]
    Targonski, Gy.,Topics in iteration theory. Vandenhoeck & Ruprecht, Göttingen—Zürich, 1981.Google Scholar
  99. [Targonski 84]
    Targonski, Gy.,New directions and open problems in iteration theory. [Grazer Math. Bericht No. 229], Math. Stat. Sekt. Forschungszentrum, Graz, 1984.Google Scholar
  100. [Targonski 841]
    Targonski, Gy.,Phantom iterates of continuous functions. In [Liedl et al. 85], pp. 196–202.Google Scholar
  101. [Targonski 89]
    Targonski, Gy.,Iteration theory and functional analysis. In [Alsina et al. 89], pp. 74–93.Google Scholar
  102. [Targonski 90]
    Targonski, Gy.,On composition operators. Zeszyty Nauk. Politechn. Sląsk. Ser. Mat.-fiz.64 (1990).Google Scholar
  103. [Targonski 91]
    Targonski, Gy.,Problem 25, InReport of the 27th ISFE, Poland 1989. Aequationes Math.39 (1990), 313–314.Google Scholar
  104. [Targonski 93]
    Targonski, Gy.,On a class of phantom fractional iterates. In [Lampreia et al. 93], pp. 295–301.Google Scholar
  105. [Targonski 94]
    Targonski, Gy.,Phantom iterates and Liedl's Pilgerschritt transformation. In [Förg-Rob et al. 94].Google Scholar
  106. [Targonski, Zdun 85]
    Targonski, Gy. andZdun, M. C.,Generators and co-generators of substitution semigroups. Ann. Math. Sil.1 (13 (1985), 169–174.Google Scholar
  107. [Targonski, Zdun 87]
    Targonski, Gy. andZdun, M. C.,Substitution operators on L p-spaces and their semigroups. [Grazer Math. Bericht No. 283], Math.-Stat. Sekt. Forsch. Ges. Joanneum, Graz, 1987.Google Scholar
  108. [Thibault 89]
    Thibault, R.,Some results obtained in Toulouse on dynamical systems. In [Alsina et al. 89], pp. 94–112.Google Scholar
  109. [Ushiki 86]
    Ushiki, Sh.,Chaotic Phenomena and Fractal Objects in Numerical Analysis. In: Nishida, T. et al. (eds),Patterns and waves—qualitative analysis of nonlinear differential equations. [Stud. Math. Appl.], North Holland, Amsterdam, 1986, pp. 221–258.Google Scholar
  110. [Wagon 85]
    Wagon, S.,The Collatz problem. Math. Intelligencer7 (1985), 72–76.Google Scholar
  111. [Weitkämper 85]
    Weitkämper, J.,Embeddings in iteration groups and semigroups with nontrivial units. Stochastica7 (1983), 175–195.Google Scholar
  112. [Whitley 83]
    Whitley, D.,Discrete dynamical systems in dimensions one and two. Bull. London Math. Soc.15 (1983), 177–217.Google Scholar
  113. [Zdun 79]
    Zdun, M. C.,Continuous and differentiable iteration semigroups. [Prace Nauk. Uniw. Sląsk. Katowic. No. 308], Silesian Univ., Katowice, 1979.Google Scholar
  114. [Zdun 85]
    Zdun, M. C.,On embedding of the circle in a continuous flow in [Liedl et al. 85], pp. 218–231.Google Scholar
  115. [Zdun 851]
    Zdun, M. C.,Regular fractional iteration. Aequationes Math.28 (1985), 73–79.Google Scholar
  116. [Zdun 88]
    Zdun, M. C.,Note on commutable functions. Aequationes Math.36 (1988), 153–164.Google Scholar
  117. [Zdun 89]
    Zdun, M. C.,On continuity of iteration semigroups on metric spaces. Annal. Soc. Math. Polon.29 (1989), 113–116.Google Scholar
  118. [Zdun 891]
    Zdun, M. C., On ℂr iteration group. In [Alsina et al. 89], pp. 373–381.Google Scholar
  119. [Zdun 892]
    Zdun, M. C.,On simultaneous Abel equations. Aequationes Math.38 (1989), 163–177.Google Scholar
  120. [Zdun 90]
    Zdun, M. C.,On quasi-continuous iteration semigroups and groups of real functions. Colloq. Math.58 (1990), 281–289.Google Scholar
  121. [Zdun 91]
    Zdun, M. C.,The structure of iteration groups of continuous functions. Aequationes Math.46 (1993), 19–37.Google Scholar
  122. [Zdun 911]
    Zdun, M. C.,On continuous iteration groups of fixed point free mappings inn space. In [Mira et al. 91], pp. 362–368.Google Scholar
  123. [Zdun 93]
    Zdun, M. C.,Some remarks on the iterates of commuting functions. In [Lampreia et al. 93], pp. 336–342.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • György Targonski
    • 1
  1. 1.Fachbereich MathematikUniversität MarburgMarburgGermany

Personalised recommendations