Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the relationship between silica and carbonate diagenesis in deep-sea sediments

  • 107 Accesses

  • 8 Citations

Zusammenfassung

Die Diagenese von biogenem Silikat und Karbonat steht in engem Zusammenhang, wie Beobachtungen an Sedimenten der DSDP Sites 462, 463, 465, 466 und 577 zeigen. Karbonatische Sedimente, die biogenes SiO2 enthalten, zeichnen sich aus durch (1) größere Verfestigung und stärkere diagenetische Veränderungen — unabhängig von der Tiefe im Sediment, (2) mehr Lösung und Überwuchs an Mikrofossil-Komponenten, (3) höheren Anteil mikritischer Partikel wie auch größerer idiomorpher Kalzitkristalle, (4) stärkere Variation der sedimentphysikalischen Eigenschaften, speziell der Porosität und damit zusammenhängender Parameter.

Die Umkristallisation des biogenen SiO2 führt in ähnlich Zusammengesetzen Sedimenten zu einer drastischen Abnahme der spezifischen Oberfläche. Minimalwerte werden erreicht, wenn sich Quarz bildet.

Diagenetisch wichtig ist die Produktion von zusätzlichem Karbonat durch die Silizifizierung von Karbonatschalen. Dieses »Überschuß«-Karbonat wird dann als Überwuchs, Zement oder außen an den »Hornstein«-Aggregaten gefällt. Demzufolge beeinflußt die Diagenese von biogenem SiO2 auch die Karbonatdiagenese. Daher ist es sinnvoll, die Diagenese von biogenem SiO2 mit zu den Faktoren zu rechnen, die das »diagenetische Potential« — wie esSchlanger &Douglas (1974) definierten — ausmachen.

Abstract

Silica diagenesis and carbonate diagenesis are interrelated. This is confirmed by observations of DSDP Sites 462, 463, 465, 466, and 577. Carbonate sediments containing chert (1) tend to be more indurated and display more advanced diagenetic alterations, regardless of sub-bottom depth; and (2) microfossil components are more strongly affected (overgrown and/or dissolved), while the amount of micritic particles and larger, euhedral calcite crystals is greater. In addition, mass physical properties, porosity in particular, vary more widely in sediment sections containing chert. Furthermore, in the studied similarly composed sediments recrystallization of biogenic opal is indicated by a significant reduction of the specific surface area, reaching a minimum value when quartz is formed.

One possible mechanism involved is the production of «surplus« dissolved carbonate created by the replacement of carbonate material by silica during the process of chert formation and silicification. The «extra« carbonate is then available for precipitation as overgrowths and cement outside the chert nodules and silicified zones. Hence silica diagenesis, if it occurs early enough in the sediment, bears some influence on carbonate diagenesis. It is therefore suggested that silica diagenesis be added to the list of factors included in the «diagenetic potential« equation ofSchlanger &Douglas (1974).

Résumé

L'étude de sédiments provenant des sites DSDP 462, 463, 465, 466 et 577 montre qu'il existe une relation entre la diagenèse de la silice et celle du carbonate biogéniques. Les sédiments carbonatés qui renferment de la silice biogémque présentent: 1) une induration plus marquée et des modifications diagénétiques plus poussées — et ce indépendamment de la profondeur sous la surface du fond; 2) une dissolution et/ou un accroissement plus développés des micro-fossiles; 3) une plus grande teneur en particules micritiques et une plus grande taille des calcites idiomorphes; 4) un éventail plus large de leurs propriétés physiques, particulièrement de la porosité et des paramètres qui en dépendent.

La cristallisation de l'opale biogénique, dans des sédiments de compositions semblables, se traduit par une réduction drastique de la surface spécifique, qui atteint une valeur minimale lorsque du quartz est formé.

Un rôle diagénétique important est joué par l'excès de carbonate dissous engendré par la silicification de coquilles carbonatées; cet excès de carbonate est dès lors disponible pour la précipitation des auréoles d'accroissement et du ciment hors des nodules de chert et des zones silicifiées. Il s'ensuit que la diagenèse du SiO2 biogénique influence la diagenèse du carbonate. Il conviendrait dès lors d'ajouter la diagenèse de la silice à la liste des facteurs qui interviennent dans l'équation du «potentiel diagénétique» deSchlanger etDouglas (1974).

Краткое содержание

Как следует из наблюд ений за седиментами глубоководных буровых скважин в точ ках 462, 463, 465, 466 и 577, диагенез биогенног о силиката и карбонат а тесно связаны между собой. К арбонатные седимент ы, содержащие биогенную окись крем ния, характеризуются: 1) большей степенью лит ификации и более прогрессирующими диагенетическими из менениями, не зависим о от глубины залегания; 2) большим количеством раствора и более инте нсивным обрастанием этих микрофоссилий; 3) большим процентом ми критических частичек, как и больши ми изоморфными крист аллами кальцита и 4) более силь но выраженной вариац ией физических свойств с едимента, именно пори стости и связанных с ней парам етров.

Перекристаллизация биогенного SiO2 в седиме нтах сходного состава вед ет к резкому снижению удельной поверхности. Минимал ьные значения ее дост игаются при образовании квар ца.

Диагенетически важн ым является продукци я добавочного карбоната в результа те силицификации карбонатных скелето в. Этот »избыточный« к арбонат выпадает затем в виде обрастаний, цемента, и ли в виде аггрегатов «роговик а». Поэтому имеет смыс л причислять диагенез биогенной к ремниевой кислоты к факторам, которые обр азуют т.н. диагенетиче ский потенциал«, который о писали в 1974 году Schlanger & Douglas.

This is a preview of subscription content, log in to check access.

References

  1. Adams, A. E., Mackenzie, W. S. &Guilford, C. (1974): Atlas of Sedimentary Rocks under the Microscope. - 104 pp., Harlow (Longman Group).

  2. Baker, P. A., Kastner, M., Byerlee, J. D. &Lockner, D. A. (1980): Pressure solution and hydrothermal recrystallization of carbonate sediments. - Marine Geol.,38, 185–203.

  3. Berger, W. H. &Von Rad, U. (1972): Cretaceous and Cenozoic sediments from the Atlantic Ocean. - Init. Repts. DSDP,14, 787–954.

  4. Berner, R. A. (1978): Rate control of mineral dissolution under earth surface conditions. - Am. Journ. Sci.,278, 1235–1252.

  5. Bissell, H. J. &Chilingar, G. V. (1967): Classification of sedimentary carbonate rocks. - In: G. V. Chilingar, H. J. Bissel & R. W. Fairbridge (Editors), Carbonate Rocks: Origin, Occurrence, and Classification, 87–168, Amsterdam (Elsevier).

  6. Dickson, J. A. D. (1966): Carbonate identification and diagenesis as revealed by staining. - Journ. Sed. Petrology,36, 491–505.

  7. Einsele, G. &Wiedmann, J. (1982): Turonian black shales in the Moroccan Basins: first upwelling in the Atlantic ocean? - In: U. von Rad, K. I. Hinz, M. Sarnthein & E. Seibold (Editors), Geology of the Northwest African Continental Margin, 396–414, Berlin (Springer).

  8. Evamy, B. D. (1969): The precipitational environment and correlation of some calcite cements deduced from artificial staining.- Journ. Sed. Petrology,39, 787–821.

  9. Folk, R. L. (1959): Practical classification of limestones. - Amer. Ass. Petrol. Geol. Bull.,43, 1–38.

  10. Fujii, N. (1981): Down-hole temperature measurements and heat flow at Hess Rise, Deep Sea Drilling Project Leg 62. - Init. Repts.,62, 1009–1014.

  11. Garrison, R. E. (1981): Diagenesis of oceanic carbonate sediments: a review of the DSDP perspective. - Soc. Econ. Palaeont. Mineralog. Spec. Publ.,32, 181–207.

  12. Gieskes, J. M. (1981): Deep-Sea Drilling interstitial water studies: implications for chemical alteration of the oceanic crust, layer I and II. - Soc. Econ. Palaeont. Mineralog. Spec. Publ.,32, 149–167.

  13. — &Johnson, J. (1981): Interstitial water studies, Leg. 61. - Init. Repts. DSDP,61, 603–612.

  14. Goll, R. M. &Bjorklund, K. R. (1972): Radiolaria in surface sediments of the Atlantic Ocean. - Micropalaeont.,17, 434–454.

  15. Greenwood, R. (1973). Cristobalite: its relationship to chert formation in selected samples of the Deep Sea Drilling Project.- Journ. Sed. Petrology,43, 700–708.

  16. Heath, G. R. (1973): Cherts from the Eastern Pacific, Leg 16, Deep Sea Drilling Project. - Init Repts. DSDP,16, 609–613.

  17. —,Burckle, L. H. et al. (1985): Init. Repts. DSDP,86, 804 p., Washington (U.S. Govt. Print. Office).

  18. Hein, J. R., Vallier, T. L. &Allmann, M. A. (1981): Chert petrology and geochemistry, Mid Pacific Mountains and Hess Rise, Deep Sea Drilling Project Leg 62. - Init. Repts. DSDP,62, 711–748.

  19. Horai, K. &Von Herzen, R. P. (1985): Measurements of heat flow on Leg 86 of the Deep Sea Drilling Project. - Init. Repts. DSDP,86, 757–778.

  20. Hurd, D. C. &Theyer, F. (1977): Changes in the chemical and physical properties of biogenic silica from the central equatorial Pacific: Part II. Refraction index density and water content of acid-cleaned samples. - Amer. Jour. Sci.,277, 1168–1200.

  21. Hyndman, R. D. &Von Herzen, R. P. (1984): A review of Deep Sea Drilling Project geothermal measurement through Leg 71. - Init. Repts. DSDP,78, 813–824.

  22. Isaac, C. M. (1982): Influence of rock composition on kinetics of silica phase changes in the Monterey Formation, Santa Barbara area, California. - Geology,10, 304–308.

  23. Kastner, M. (1981): Authigenic silicates in deep-sea sediments: formation and diagenesis. - In: C. Emiliani (Editor), The Sea,7, New York (Wiley), 915–980.

  24. —,Keene, J. B. &Gieskes, J. M. (1977): Diagenesis of siliceous oozes, I: chemical controls on the rate of opal-A to opal-CT transformation — an experimental study. - Geochim, Cosmochim. Acta,41, 1041–1059.

  25. Kim, D., Manghnani, M. H. &Schlanger, S. D. (1985): The role of diagenesis in the development of physical properties of deep-sea carbonate sediments. - Marine Geol.,69, 69–91.

  26. Knauth, L. P. &Epstein, S. (1975): Hydrogen and oxygen isotope ratios in silica from JOIDES Deep Sea Drilling Project. - Earth Planet. Sci. Lett.,25, 1–10.

  27. Lancelot, Y. (1973): Chert and silica diagenesis in sediments from the central Pacific. - Init. Repts. DSDP,17, 377–405.

  28. Larson, R. L., Schlanger, S. O. et al. (1981): Init. Repts. DSDP,61, - 885 p., Washington (U.S. Govt. Print. Office).

  29. Matter, A. (1974): Burial diagenesis of pelitic and carbonate deep-sea sediments from the Arabian Sea. - Init. Repts. DSDP,23, 421–443.

  30. McDuff, R. E. (1985): The chemistry of interstitial waters, Deep Sea Drilling Project Leg 86. - Init. Repts. DSDP,86, 675–688.

  31. Riech, V. (1981): Siliceous sediments from the Nauru Basin: diagenetic alteration of biogenic opal and authigenesis of silica and silicates. - Init. Repts. DSDP,61, 523–532.

  32. Schlanger, S. O., Douglas, R. G. et al. (1973): Fossil preservation and diagenesis of pelagic carbonates from the Magellan Rise, central North Pacific Ocean. - Init. Repts. DSDP,17, 407–427.

  33. - & - (1974): The pelagic ooze-chalk-limestone transition and its implications for marine stratigraphy. - In: K. J. Hsü & H. C. Jenkyns (Editors), Pelagic Sediments: On Land and Under Sea. Int. Ass. Sed., Spec. Publ. No. 1, 117–148.

  34. Scholle, P. A. (1977): Chalk diagenesis and its relation to petroleum exploration: oil from chalks, a modern miracle? - Amer. Ass. Petrol. Geol. Bull.,61, 982–1009.

  35. Thein, J. &Von Rad, U. (1987): Silica diagenesis in continental slope and rise sediments off eastern North America (Sites 603 and 605, Leg 93; Sites 612 and 613, Leg 95). Init. Repts. DSDP,95, 501–525.

  36. Thiede, J., Vallier, T. L. et al. (1981): Init. Repts. DSDP,62, 1120 p., Washington (U.S. Govt. Print. Office).

  37. Van Der Lingen, G. J. &Packham, G. H. (1975): Relationship between diagenesis and physical properties of biogenic sediments in the Ontong-Java Plateau (Sites 288 and 289, Deep Sea Drilling Project). - Init. Repts. DSDP,30, 443–481.

  38. Williams, L. A. &Crerar, D. A. (1985): Silica diagenesis, II: general mechanism. - Journ. Sed. Petrol.,55, 312–321.

  39. —,Parks, G. A. &Crerar, D. A. (1985): Silica diagenesis, I: solubility controls. - Journ. Sed. Petrol.,55, 301–311.

  40. Wilson, R. C. L. (1966): Silica diagenesis in Upper Jurassic limestones of southern England. - Journ. Sed. Petrol.,36, 1036–1049.

  41. Wise, S. W. &Kelts, K. R. (1972): Inferred diagenetic history of a weakly silicified deep sea chalk. - Gulf Coast Ass. Geol. Soc. Trans.,22, 177–203.

  42. - &Weaver, F. M. (1974): Chertification of oceanic sediments. - In: K. J. Hsü & H. C. Jenkyns (Editors), Pelagic Sediments: On Land and Under Sea. Int. Ass. Sed., Spec. Publ. No. 1, 301–326.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hobert, L.A., Wetzel, A. On the relationship between silica and carbonate diagenesis in deep-sea sediments. Geol Rundsch 78, 765–778 (1989). https://doi.org/10.1007/BF01829321

Download citation

Keywords

  • SiO2
  • Calcite
  • Diagenesis
  • Chert
  • Calcite Crystal