Geologische Rundschau

, Volume 81, Issue 2, pp 571–578 | Cite as

The effects of magnesium-to-calcium ratios in artificial seawater, at different ionic products, upon the induction time, and the mineralogy of calcium carbonate: a laboratory study

  • A. I. Rushdi
  • R. M. Pytkowicz
  • E. Suess
  • C. T. Chen
Article

Abstract

The effects of the Mg2+ ion concentration and the ionic products of carbonate upon the induction time for the onset of precipitation and the different mineralogies of calcium carbonates were studied. It was shown that Mg2+ ions delay the spontaneous precipitation of calcium carbonate from supersaturated solutions (e.g. seawater) with respect to calcium carbonate mineral to such an extent that only biogenic removal of skeletal calcium carbonate is possible from the open ocean. Low concentrations of magnesium ions in solution favor calcite formation while aragonite is formed at high magnesium concentrations. The mole% of MgCO3 in magnesian calcite increases with the increase of (Mg2+) in solution and with the increase of (CO32−) in the presence of (Mg2+) in solution.

Therefore, one would expect that high Mg-calcite is formed in wormed coastal regions, where high temperature and or the increase of photosynthesis activities tend to expel CO2 and increase supersaturation, and low-magnesian calcite is favored in meteoric-vadose environment where low concentration of magnesium ions or in burial environment where respiration and oxidation is high and decrease supersaturation.

Zusammenfassung

Die Wirkung der Mg2+-Ionenkonzentration und des Ionenprodukts von Karbonaten wurde in Abhängigkeit von der Induktionszeit für den Beginn der Ausfällung und der unterschiedlichen Mineralogie von Kalziumkarbonaten untersucht. Es konnte gezeigt werden, daß Mg2+-Ionen die spontane Ausfällung von Kalziumkarbonat aus einer übersättigten Lösung (z. B. Meerwasser), im Vergleich zu Kalziumkarbonatmineralien derart verzögert, daß nur noch der biogene Entzug für skelettbildendes Kalziumkarbonat aus dem Meerwasser möglich ist. Niedrige Konzentrationen von Magnesiumionen in der Lösung fördern die Kalzitbildung, während Aragonit bei hohen Magnesiumkonzentrationen gebildet wird. Die Mol% MgCO3 in Magnesiumkalzit steigen mit der Zunahme von (Mg2+) und mit der Zunahme von (CO32−) bei Gegenwart von (Mg2+) in der Lösung.

Daher würde man erwarten, daß Hochmagnesiumkalzit in erwärmten Küstengebieten gebildet wird, wo hohe Temperaturen, und/oder die Zunahme der Photosyntheseaktivität dazu führen, daß CO2 frei wird, und damit die Übersättigung ansteigen lassen. Niedrigmagnesiumkalzit wird bevorzugt in meteorische-vadosen Gebieten mit niedriger Magnesiumionenkonzentration oder in Versenkungsgebieten gebildet, wo die Respiration und die Oxidation hoch ist, bei sinkender Übersättigung.

Résumé

Une étude a été menée sur l'effet de la concentration en ions Mg2+ et des produits ioniques des carbonates sur le temps d'induction du début de la cristallisation et sur la nature minéralogique du carbonate de calcium formé. On a pû montrer que les ions Mg2+ retardent la précipitation spontanée du carbonate de Ca à partir de solutions sursaturées par rapport aux minéraux de CaCO3 (par exemple l'eau de mer) et ce à un point tel que seule la précipitation biogénique du carbonate de Ca dans les squelettes est possible à partir de l'eau de mer. Les faibles concentrations en ions Mg2+ dans les solutions favorisent la formation de calcite, l'aragonite se formant pour des concentrations plus élevées. Le pourcentage molaire de MgCO3 dans la calcite magnésienne augmente avec la teneur, dans la solution, de Mg2+ et de Co32− enprésence de Mg2+.

On présume donc que la calcite riche en Mg se forme dans des milieux côtiers chauds dans lesquels la haute température et/ou la forte activité photosynthétique provoquent la libération de CO2, ce qui augmente la sursaturation. La calcite pauvre en Mg se forme de préférence dans des milieux météoriques vadoses à faible concentration en ions Mg2+ ou dans des milieux d'enfouissement où la respiration et l'oxydation importantes abaissent le degré de sursaturation.

Краткое содержание

Исследовали влияние концентрации ионов Mg2+ на появление их в кар бонатах в зависимост и от времени индукции н ачала выпадания и от различия минераль ного состава карбона тов кальция. Доказано, что ионы магния настольк о задерживают спонтан ное выпадание карбон ата кальция из пересыщен ного раствора, (напр.: морской воды), по сравн ению с другими минера лами карбоната кальция, чт о СаСО3 может извлекаться из морск ой воды только биоген но. Низкие концентрации ионов магния в раство ре усиливают образован ие кальцита, а арагони т образуется только пр и высоких концентрац иях его. В растворах, в кото рых присутствуют ион ы магния, с увеличением их числа и ионов СО3 содержание MgCO3 в маг ниевом кальците возрастает. Поэтому с ледует ожидать, что кальцит с высоким сод ержанием магния обра зуется в прибрежных региона х, где вода тепла и усиление фотосинте за приводит к освобож дению СО2 и возрасстанию пе ренасыщенности. Кальцит с низким соде ржанием магния образ уется гл. обр. в регионах, где часты дожди и концентрация ионов м агния низка, или же в ре гионах осаждения, где при пон ижающейся перенасыщ енности господствует высока я окисляемость и респирация.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berner, R. A. (1975): The role of magnesium in crystal growth of calcite and aragonite from seawater. - Geochim. Cosmochim. Acta.,39, 489–504.Google Scholar
  2. — (1978): Equilibrium, kinetics and the precipitation of magnesian calcite from seawater. - Amer. J. Sci.,278, 1435–1477.Google Scholar
  3. Binkley, K. L., Wilkinson, B. H. &Owen, R. M. (1980). Vadose beach rock cementation along a southeastern Michigan mud lake. - J. Sed. Petrol.,50, 953–962.Google Scholar
  4. Bischoff, J. L. (1968): Kinetics of calcite nucleation: magnesium ion inhibition and ionic strength catalysis. - J. Geophys. Res.,73, 3315–3322.Google Scholar
  5. — &Fyfe, W. S. (1968): The aragonitecalcite transformation - Amer. J. Sci.,266, 65–79.Google Scholar
  6. Chave, K. E. (1952): A solid solution between calcite and dolomite. - J. Geol.,60, 190–192.Google Scholar
  7. —,Deffeys, K. S., Weys, P. K., Garrel, R. M. &Thompson, M. E. (1962): Observation on the stability of skeletal carbonates in aqueous solutions. - Science,137, 33–34.Google Scholar
  8. Christiansen, J. A. &Nielsen, A. E. (1951): On the kinetics formation of precipitates of sparingly soluble salts. - Act Chem. Scand.,5, 673–675.Google Scholar
  9. Dufour, L. &Defay, R. (1963): Thermodynamics of clouds. Academic Press, New York.Google Scholar
  10. Kashchiev, D. (1969): Nucleation at variable supersaturation. - Surface Sci.,18, 293–297.Google Scholar
  11. Kester, D. R., Duedall, J. W., Connor, D. N. &Pytkowicz, R. M. (1967): Preparation of artificial seawater. - Limnol. Oceanogr.,12, 176–179.Google Scholar
  12. Kitano, Y. &Hood, D. W. (1962): Calcium carbonate crystal forms formed from sewater by inorganic processes.- J. Oceanogr. Soc. Japan,18, 35–39.Google Scholar
  13. —,Park, K. &Hood, D. W. (1962): Pure aragonite synthesis. - J. Geophys. Res.,67, 4873–4874.Google Scholar
  14. Land, L. S. (1967): Diagenesis of skeletal carbonates. - J. Sediment. Petrol.,37, 914–930.Google Scholar
  15. Leitmeir, H. (1910): Neves. Tahris. Mineral.,1, p. 9.Google Scholar
  16. Moller, P.Rajagapolan, G. (1975): Zeitsch. Physik., Chem., Nerve, foldge 74.Google Scholar
  17. Morse, J. W., Nucci, A. &Walter, L. M. (1979): Magnesium interaction with the surface of calcite in seawater. - Science,205, 904–905.Google Scholar
  18. Mucci, A. &Morse, J. W. (1983): The incorporation of Mg and Sr into Calcite overgrowth: Influences of growth rate and solution composition. Geochim. Cosmochim. Acta.,47, 217–233.Google Scholar
  19. — &Morse, J. W. (1984): The solubility of calcite in seawater solutions at various magnesian concentrations. It = 0.69M at 25 °C and one atmosphere total pressure. - Geochim. Cosmochim. Acta.,48, 815–822.Google Scholar
  20. Nancollas, G. H., Purdie, N. (1964): The kinetics of crystal growth. - Quart. Rev. London,18, 1–20.Google Scholar
  21. Newkirk, J. B. (1957): General theory mechanism and kinetics: from precipitation solid solution. Lectures presented to AMS during natural Congress 4–8 November 1957, pp. 6–40. - American Society for Metal, Cleveland, OH.Google Scholar
  22. Plummer, L. N. &Mackenzie, F. T. (1974): Predicting mineral solubility from rate data: Application to the dissolution of magnesium calcite. Amer. J. Sci.,274, 61–83.Google Scholar
  23. Pytkowicz, R. M. (1965): Rate of inorganic calcium carbonate nucleation. - J. Geol.,73, 196–199.Google Scholar
  24. — (1973): Calcium carbonate retention in supersaturated seawater. - Amer. J. Sed.,273, 515–522.Google Scholar
  25. — (1983): Equilibria, non-equilibria, and natural waters. -II. Wiley Interscience, New York.Google Scholar
  26. Sayles, F. L. &Fyfe, W. S. (1973): The crystallization of magnesite from aqueous solution. - Geochim. Cosmochim. Act.,37, 87–99.Google Scholar
  27. Stumm, W. &Morgan, J. W. (1970): Aquatic chemistry: An introduction emphasizing chemical equilibria in natural waters. - Wiley Interscience, New York, 780 pp.Google Scholar
  28. Taft, W. &Harbaugh, J. W. (1964): Modern carbonate sediments of southern Florida, Bahamas, and Espiritu Santo Island, Baja, California: A comparison of their mineralogy and chemistry. - Standford University Publication in Geological Science,8, 133 pp.Google Scholar
  29. Thorstenson, D. C. &Plummer, N. L. (1977): Equilibrium criteria for two-component solids reacting with fixed composition in an aqueous phase-example: The magnesian calcite. - Amer. J. Sci.,277, 1203–1223.Google Scholar

Copyright information

© Ferdinand Enke Verlag Stuttgart 1992

Authors and Affiliations

  • A. I. Rushdi
    • 1
  • R. M. Pytkowicz
    • 2
  • E. Suess
    • 3
  • C. T. Chen
    • 4
  1. 1.Department of Oceanography, Faculty of ScienceSana'a UniversitySana'aRepublic of Yemen
  2. 2.College of OceanographyOregon State UniversityCorvallisUSA
  3. 3.Forschungszentrum für marine GeowissenschaftenGEOMARKielW-Germany
  4. 4.Institute of Marine GeologyNational Sun Yat-Sen UniversityKaohsiungTaiwan 80424 ROC

Personalised recommendations