Advertisement

Geologische Rundschau

, Volume 74, Issue 3, pp 505–518 | Cite as

The early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts

  • H. C. Jenkyns
Article

Abstract

Two intervals of Mesozoic time are demonstrably of sufficient geological brevity to qualify readily for the term ‘Anoxic Event’: the earlyfalciferum Zone orexaratum Subzone of the Toarcian and theWhiteinella archaeocretacea Interval Zone that straddles the Cenomanian-Turonian boundary. Both periods of time saw regional deposition of anomalously organic-rich strata (black shales) accompanied by a positive 2‰ PDB carbon-isotope excursion in coeval biogenic carbonates, and significant faunal change. The duration of both events was probably less than half a million years, and both were preceded by regional erosion and possible upwelling. Coincident sea-level rise and transgression is likely. A »European view« of these events, however, spotlights some significant differences. Whereas thefalciferum-Zone organic matter is generally more concentrated and more hydrogen-rich on the palaeo-European shelf than on the Tethyan continental margins, the reverse holds true for the black shales formed during theWhiteinella archaeocretacea Interval Zone. Furthermore, the carbon-isotope composition offalciferum-Zone organic matter from both north European and Tethyan sites is anomalously negative compared to that developed in theWhiteinella archaeocretacea Interval Zone. Differing planktonic organisms may have been involved and their possible diverse ecological requirements may go some way to explaining the nature and distribution of facies deposited during these two events.

Keywords

Continental Margin Black Shale Carbone Toarcian Biogenic Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Zwei mesozoische Abschnitte rechtfertigen die Verwendung des Begriffes »Anoxic Event«: die frühefalciferum-Zone oderexaratum-Zone des Toarcian und dieWhiteinella archaeocretacea Interval-Zone, die die Grenze Cenoman-Turon überquert. In beiden Zeitabschnitten bildeten sich regional Sedimente mit anomalem Reichtum an organischer Substanz (Schwarzschiefer), die von einem positiven über 2‰ PDB hinausgehenden Ausschlag bei den Kohlenstoffisotopen in gleichalten biogenen Karbonaten begleitet werden. Die Dauer der beiden Ereignisse betrug wahrscheinlich weniger als eine halbe Million Jahre und beiden ging eine Phase regionaler Erosion und möglicherweise des »Aufquellenden Tiefenwassers« voraus. Gleichzeitiger Anstieg des Meerespiegels mit Transgression ist wahrscheinlich. Die europäische Sicht dieser Ereignisse bedeutet einige signifikante Unterschiede. Diefalciferum-Zone besitzt auf dem palaeo-europäischen Shelf generell eine höhere Konzentration des organischen Materials und der Kohlenwasserstoffe als auf den Kontinentalrändern der Tethys. Das Gegenteil ist der Fall in den Schwarzschiefern, die sich während derWhiteinella archaeocretacea Interval-Zone gebildet haben. Außerdem ist die Zusammensetzung der Kohlenstoffisotopen des organischen Materials derfalciferum-Zone sowohl von Nordeuropa als auch von der Tethys unnormal negativ verglichen mit derWhiteinella archaeocretacea Interval-Zone. Die Beteiligung unterschiedlicher planktonischer Organismen und möglicherweise abweichende ökologische Bedingungen können für die Faziesverteilung während dieser zwei Ereignisse verantwortlich gemacht werden.

Résumé

Deux intervalles de l'ère mésozoĩque sont assez brefs pour être qualifiés d'événements anoxiques: la Zoneà falciferum (souszone àexaratum) du Toarcien et la Zone àWhiteinella archaeocretacea à la limite Cénomanien-Turonien. Chacun de ces deux intervalles correspond à un dépôt régional de couches anormalement riches en matières organiques (black shales), accompagné, dans des carbonates biogénétiques de même âge, d'une anomalie positive de plus de 2‰ PDB des isotopes du carbone. Les deux événements ont probablement été précédés par une phase d'érosion ou de condensation sédimentaire et de remontée d'eaux profondes («upwelling»). Leur durée, qui correspondait probablement à une période d'élévation du niveau des mers et de transgression, a été inférieure à 500.000 ans.

A l'échelle européenne, les deux événements anoxiques se distinguent: la matière organique de la Zone àfalciferum est plus concentrée et plus riche en hydrogène sur la plateforme mésozoĩque nord-européenne que sur la marge téthysienne, tandis que la Zone àWhiteinella archaecocretacea montre une dispostion inverse. De plus, la composition isotopique du C dans la matière organique de la Zone àfalciferum est plus négative que celle de la Zone àWhiteinella archaeocretacea tant dans les régions nord-européennes que téthysienne. Il est possible qu'il s'agisse d'espèces différentes d'organismes planctoniques, leurs milieux écologiques différents pouvant expliquer la nature et la distribution des faciès typiques déposés pendant les deux épisodes.

Краткое содержание

Термин “Аnохс Event” (бески слородная среда) можн о применить к двум отде лам мезозоя: к ранней з оне фальциферов, или эксз арации тоарского яру са, и к зоне интервала Whiteinella archaeocretacea, пе ресекающей границу сеномана/тур она. В течение этих отрезков времени про исходило региональн ое отложение богатых органически ми веществами седиме нтов (черные сланцы), которо е сопровождалось положительным (по PDB бол ее 2‰) значением для соотношения изотопо в углерода в биогенны х карбонатах того же возраста. Это с обытие произошло примерно за период ме нее полумиллиона лет, и обоим событиям предш ествовала фаза регио нальной эрозии и, возможно, апв еллиг — восходящее течение глубоководн ых вод. Возможно, однов ременно имело место повышени е уровня моря и его позднейшая трансгре ссия. Значения этих со бытий для Европы не одинако во. Зона фальциферов о бладала в регионе древнего ев ропейского шельфа в общем более высокой к онцентрацией органи ческого материала и, следоват ельно, углеводородов, чем регионы материковог о края Тетиса, в то врем я, как при отложении черных сланцев, образовавши хся в зоне интервала, госпо дствовали совершенн о обратные условия. Кроме того, со став изотопов углеро да в органическом матер иале фальциферовой з оны, как на севере Европы, так и в районе Тетиса характеризовался по отношению к таково му зоны интервала иск лючительно отрицательными знач ениями. Возможно, что за такое распреде ления фация ответств енны различия планктона, а, может быть, и различия экологических услов ий его обитания.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur, M. A. &Schlanger, S. O. (1979): Cretaceous »Oceanic Anoxic Events« as causal factors in development of reef-reservoired giant oil fields. - Bull. Am. Ass. Petrol. Geol.,63, 870–885.Google Scholar
  2. — &Premoli-Silva, I. (1982): Development of widespread organic carbon-rich strata in the Mediterranean Tethys. In:Schlanger, S. O. &Cita, M. B. (Eds.). - Nature and Origin of Cretaceous carbon-rich Facies, Academic Press, London, 7–54.Google Scholar
  3. -,Schlanger, S. O. &Jenkyns, H. C. (1985): The Cenomanian-Turonian Oceanic Anoxic Event, II. Paleoceanographic controls on organic-matter production and preservation. In:Brooks, J. &Fleet, A. J. (Eds.). - Marine Petroleum Source Rocks, Spec. Publ. geol. Soc. Lond., in press.Google Scholar
  4. Berggren, W. A. &Hollister, C. D. (1977): Plate tectonics and paleocirculation — commotion in the ocean. - Tectonophys.,38, 11–48.Google Scholar
  5. Bernoulli, D. (1964): Zur Geologie des Monte Generoso. - Beitr. geol. Karte Schweiz., N. F.,118, 134 pp.Google Scholar
  6. — (1972): North Atlantic and Mediterranean Mesozoic fades: a comparison. In:Hollister, C. D. &Ewing, J. I. et al. - Initial Reports Deep Sea Drilling Project,11, U.S. Government Printing Office, Washington D.C., 801–79.Google Scholar
  7. - &Jenkyns, H. C. (1974): Alpine, Mediterranean and central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. In:Dott, R. H. &Shaver, R. H. (Eds.). - Modern and Ancient Geosynclinal Sedimentation, Spec. Publ. Soc. econ. Paleont. Miner.,19, 129–60.Google Scholar
  8. Bitterli, P. (1960): Bituminous Posidonienschiefer (Lias epsilon) of Mont Terri, Jura Mountains. - Bull. Ver. Schweiz. Petrol.-Geol. Ing.,26, 41–48.Google Scholar
  9. — (1962): Studien an bituminösen Gesteinen aus Österreich und benachbarten Gebieten.- Erdoel Zeitschr.,78, 405–416.Google Scholar
  10. Boer, P. De (1982): Some remarks about the stable isotope composition of cyclic pelagic sediments from the Cretaceous in the Apennines. In:Schlanger, S. O. &Cita, M. B. (Eds.) - Nature and Origin of Cretaceous carbon-rich Facies, Academic Press, London, 129–143.Google Scholar
  11. Bosellini, A., Broglio Loriga, C. &Busetto, C. (1978): I bacini cretacei del Trentino.- Riv. ital. Paleont. Stratigr.,84, 897–946.Google Scholar
  12. —,Masetti, D. &Sarti, M. (1981): A Jurassic »Tongue of the Ocean« infilled with oolitic sands: the Belluno Trough, Venetian Alps, Italy. - Mar. Geol.,44, 59–95.Google Scholar
  13. —,Fazzuoli, M., Masetti, D., Mattavelli, L. &Sarti, M. (1981): Le torbiditi oolitiche della falda toscana (Giurassico medio-superiore): provenienza e implicazioni tettoniche. - Riv. ital. Paleont. Stratigr.,87, 177–192.Google Scholar
  14. Burnhill, T. J. &Ramsay, W. V. (1981): Mid-Cretaceous palaeontology and stratigraphy, central North Sea. In:Illing, L.V &Hobson, G. D. (Eds.). - Petroleum Geology of the Continental shelf of north-west Europe, Inst. Petrol., Heyden and Son, Ltd., London, 245–254.Google Scholar
  15. Caron, M. &Homewood, P. (1983): Evolution of early planktic foraminifers. - Mar. Micropaleont.,7, 453–462.Google Scholar
  16. Carter, D. J. &Hart, M. B. (1977): Aspects of mid-Cretaceous stratigraphical micropalaeontology. - Bull. Brit. Mus. nat. Hist. (Geol.),29, 1–135.Google Scholar
  17. Coleman, M. L. &Raiswell, R. (1981): Carbon, oxygen and sulphur isotope variations in concretions from the Upper Lias of N.E. England. - Geochim. Cosmochim. Acta,45, 329–340.Google Scholar
  18. Cope, J. C. W.,Getty, T. A.,Howarth, M. K.,Morton, N. &Torrens, H. S. (1980): A correlation of Jurassic rocks in the British Isles. Part I: Introduction and Lower Jurassic. - Spec. Rpt. geol. Soc. Lond., no.14, 73 pp.Google Scholar
  19. Cousin, M. (1981): Les rapports Alpes-Dinarides: les confins de l'Italie et de la Yugoslavie. - Publ. Ann. Soc. geol. Nord.,5, 517 pp and 521 pp.Google Scholar
  20. Crostella, A. &Barter, T. (1980): Triassic-Jurassic depositional history of the Dampier and Beagle Sub-Basins, north-west shelf of Australia. - J. austr. Petrol. Explor. Ass.,20, 25–33.Google Scholar
  21. Dal Piaz, G. (1907): Le Alpi Feltrine. - Mem. R. 1st Veneto Scienze, Lett. Arte,27/9, 176 pp.Google Scholar
  22. Deegan, C. E. &Scull, B. J. (1977): A proposed lithostratigraphic nomenclature for the Central and Northern North Sea.- Rep. Inst. geol. Sci., no.77/25, 36 pp.Google Scholar
  23. Degens, E.T. (1969): Biogeochemistry of stable carbon isotopes. In:Eglinton, G. &Murphy, M. T. J. (Eds.). - Organic Geochemistry, Methods and Results, Springer-Verlag, Berlin, 304–329.Google Scholar
  24. Demaison, G. J. &Moore, G. T. (1980): Anoxic environments and oil source bed genesis. - Bull. Am. Ass. Petrol. Geol.,64, 1179–1209.Google Scholar
  25. Diester-Haass, L. (1978): Sediments as indicators of upwelling. In:Boje, R. &Tomczak, M. (Eds.). - Upwelling Ecosystems, Springer-Verlag, Berlin, 261–281.Google Scholar
  26. Dürr, St. H. (1967): Geologie der Serrania de Ronda und ihrer südwestlicher Ausläufer (Andalusien).- Geol. romana,6, 1–73.Google Scholar
  27. Eisenack, A. (1957): Mikrofossilien in organischer Substanz aus dem Lias Schwabens (Süddeutschland). - Neues Jb. Geol. Paläeont., Abh.,105, 239–249.Google Scholar
  28. Ekdale, A. A. &Bromley, R. G. (1984): Comparative ichnology of shelf-sea and deep-sea chalk. - J. Palaeont.58, 322–332.Google Scholar
  29. Ernst, G.,Schmid, F. &Klischies (1979): Multistratigraphische Untersuchungen in der Oberkreide des Raums Braunschweig-Hannover. In:Wiedmann, J. (Ed.) Aspekte der Kreide Europas, Int. Union Geol. Sci., ser. A, no.6, 11–46.Google Scholar
  30. Fischer, A. G. &Arthur, M. A. (1977): Secular variations in the pelagic realm. In:Cook, H. E. &Enos, P. (Eds.) Deep-water carbonate environments. Spec. Publ. Soc. econ. Palaeont. Miner.,25, 19–50.Google Scholar
  31. Fischer, R. (1966): Die Dactylioceratidae (Ammonoidea) der Kammerker (Nordtirol) und die Zonengliederung des alpinen Toarcien. - Abh. bayer. Akad. Wiss., math.-nat. Kl., N. F., 126 pp.Google Scholar
  32. Frebold, H. (1957): The Jurassic Fernie Group in the Canadian Rocky Mountains and foothills. - Mem. geol. Surv. Can.,287, 197 pp.Google Scholar
  33. Fyfe, J. A., Abbotts, I. &Crosby, A. (1981): The subcrop of the mid-Mesozoic unconformity in the UK area. In:Illing, L. V. &Hobson, G. D. (Eds.). Petroleum Geology of the Continental Shelf of north-west Europe. Inst. of Petrol., Heyden and Son, Ltd., London, 236–244.Google Scholar
  34. Gaetani, M. &Poliani, G. (1978): Il Toarciano e il Giurassico medio in Albenza (Bergamo). - Riv. ital. Paleont. Stratigr.,84, 349–382.Google Scholar
  35. Gallitelli Wendt, M. F. (1969): Ammoniti e stratigrafia del Toarciano umbromarchigiano (Appennino centrale). - Boll. Soc. paleont. ital.,8, 11–62. (1970).Google Scholar
  36. Garrison, R. E. &Fischer, A. G. (1969): Deep-water limestones and radiolarites of the Alpine Jurassic. In:Friedman, G. M. (Ed.) Depositional Environments in Carbonate Rocks, a Symposium. Spec. Publ. Soc. econ. Paleont. Miner., Tulsa,14, 20–56.Google Scholar
  37. Géczy, B. (1984): Provincialism of Jurassic ammonites; examples from Hungarian faunas. - Acta Geol. Hung.,27, in press.Google Scholar
  38. Germann, K. &Waldvogel, F. (1971): Mineralparagenesen und Metallgehalte der »Manganschiefer« (unteres Toarcian) in den Allgäu-Schichten der Allgäuer und Lechtaler Alpen. -Neues. Jahrb. Geol. Paläont. Abh.,139, 316–45.Google Scholar
  39. Graciansky, P. C. De, Brosse, E., Deroo, G., Herbin, J.-P., Montadert, L., Müller, C., Sigal, J. &Schaff, A. (1982): Les formations d'âge cré tacé de l'Atlantique nord et leur matière organique: paléogéographie et milieux de dépôt. - Rev. inst. Fr. Pétrole,37, 275–336.Google Scholar
  40. —,Deroo, G., Herbin, J.P., Montadert, L., Müller, C., Schaff, A. &Sigal, J. (1984): Ocean-wide stagnation episode in the Late Cretaceous. - Nature308, 436–349.Google Scholar
  41. Gras, T. C. Van, Viets, T. C., Leeuw, J. W. De &Schenck, P. A. (1983): A study of the soluble and insoluble organic matter from the Livello Bonarelli, a Cretaceous black shale deposit in the Central Appennines, Italy.- Geochim. Cosmochim. Acta,47, 1051–1059.Google Scholar
  42. Grün, W., Prins, B. &Zweili, F. (1974): Coccolithophoriden aus dem Lias epsilon von Holzmaden. - Neues Jb. Geol. Paläeont., Abh.,147, 294–328.Google Scholar
  43. Håkansson, E.,Bromley, R. &Perch-Nielsen, K. (1974): Maastrichtian chalk of north-west Europea pelagic shelf sediment. In:Hsü, K. J. &Jenkyns, H. C. (Eds.). Pelagic Sediments: on Land and under the Sea, Spec. Publ. int. Ass. Sediment. 1, 211–233.Google Scholar
  44. Hallam, A. (1967): An environmental study of the Upper Domerian and Lower Toarcian in Great Britain. - Phil Trans. Roy. Soc. Lond., B,252, 393–445.Google Scholar
  45. — (1975): Jurassic Environments. - Cambridge Univ. Press, Cambridge, 269 pp.Google Scholar
  46. — (1976): Stratigraphic distribution and ecology of European Jurassic bivalves. - Lethaia,9, 245–259.Google Scholar
  47. — (1977): Jurassic bivalve biogeography. - Paleobiol.,3, 58–73.Google Scholar
  48. — (1981): A revised sea-level curve for the early Jurassic. - J. geol. Soc. London,138, 735–743.Google Scholar
  49. — &Sellwood, B. W. (1976): Middle Mesozoic sedimentation in relation to tectonics in the British area. - J. Geol.,84, 302–321.Google Scholar
  50. Hancock, J. M. (1975): The petrology of the Chalk. - Proc. Geol. Ass.,86, 499–535.Google Scholar
  51. Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G. &Walters, R. (1982): A geologic time scale. - Cambridge University Press, Cambridge, 131 pp.Google Scholar
  52. Hart, M. B. (1980): The recognition of mid-Cretaceous sea-level changes by means of Foraminifera. - Cret. Res.,1, 289–297.Google Scholar
  53. — &Bigg, P. J. (1981): Anoxic events in the late Cretaceous shelf seas of north-west Europe. In:Neale, J. W. &Brasier, M. D. (Eds.). Microfossils from Recent and fossil shelf seas, Brit. Micropal. Soc., Ellis Horwood Ltd., Chichester, 177–185.Google Scholar
  54. - &Ball; K. C. (1986): Late Cretaceous anoxic events, sea level changes and the evolution of planktonic Foraminifera. In:Summerhayes, C. P. &Shackleton, N. J. (Eds.). North Atlantic Palaeoceanography, Spec. Publ. geol. Soc. Lond., in press.Google Scholar
  55. Herbin, J. P.,Montadert, L.,Müller, C,Gomez, R.,Thurow, J. &Wiedmann, J. (1986): Organic-rich sedimentation at the Cenomanian-Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys. In:Summerhayes, C. P. &Shackleton, N. J. (Eds.). North Atlantic Palaeoceanography, Spec. Publ. geol. Soc. Lond., in press.Google Scholar
  56. Hernandez-Pacheco, (1936): Los materials bituminosos de la Serrania de Ronda. - Bol. Soc. esp. Hist. nat.,36, 245–275.Google Scholar
  57. Ingle, J. (1981): Origin of Neogene diatomites around the North Pacific Rim. In:Garrison, R. E. &Douglas, R. G. (Eds.). The Monterey Formation and related siliceous rocks of California. - Spec. Publ. Pac. Sect. Soc. econ. Paleont. Miner., 159–179.Google Scholar
  58. Jenkyns, H. C. (1980): Cretaceous anoxic events: from continents to oceans. - J. Geol. Soc. London,137, 171–188.Google Scholar
  59. - &Clayton, C. J. (1986): Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. - Sedimentol.,33, in press.Google Scholar
  60. —,Sarti, M., Masetti, D. &Howarth, M. K. (1985): Ammonites and stratigraphy of Lower Jurassic black shales and pelagic limestones in the Belluno Trough, Southern Alps, Italy. - Eclog. Geol. Helv.,78, 299–311.Google Scholar
  61. Juignet, P. &Kennedy, W. J. (1976): Stratigraphie comparée du Cenomanien du sud de l'Angleterre et de Haute Normandie. - Bull. trimest. Soc. géol. Normandie et Amis du Mus. Havre,63, 1–193.Google Scholar
  62. Jukes-Browne, J. A. &Hill, W. (1903): The Cretaceous Rocks of Britain, 2, The Lower and Middle Chalk of England. - Mem. geol. Surv. U.K., 558 pp.Google Scholar
  63. Kälin, O. (1980):Schizosphaerellapunclulata Deflandre &Dangeard: wall ultrastructure and preservation in deeper water carbonate sediments of the Tethyan Jurassic. - Eclog. Geol. Helv.,73, 983–1008.Google Scholar
  64. Kauffmann, E. G. (1978): Benthic environments and paleoecology of the Posidonienschiefer (Toarcian). - Neues Jb. Geol. Paläeont., Abh.,157, 18–36.Google Scholar
  65. — (1981): Ecological reappraisal of the German Posidonienschiefer (Toarcian) and the stagnant basin model. In:Gray, J., Boucot, A. J. &Berry, W. B. N. (Eds). Communities of the past, Hutchinson Ross Publishing Co., Stroudsberg, Pennsylvania, 311–381.Google Scholar
  66. Küspert, W. (1982): Environmental changes during oilshale deposition as deduced from stable isotope ratios. In:Einsele, G. &Seilacher, A. (Eds). Cyclic and Event Stratification, Springer-Verlag, Berlin, 482–501.Google Scholar
  67. Michelsen, O. (Ed.) (1982): Geology of the Danish Central Graben. - Geol. Surv. Denmark, ser. B, 8, 132 pp.Google Scholar
  68. Morris, K. A. (1979): A model for the deposition of bituminous shales in the Lower Toarcian. In: La Sédimentation jurassique W-européen, Spec. Publ. Assoc. Sedim. Français 1, 397–406.Google Scholar
  69. — (1980): Comparison of major sequences of organic-rich mud deposition in the British Jurassic. - J. geol. Soc. Lond.,127, 157–170.Google Scholar
  70. Müller, G. &Blaschke, R. (1969): Zur Entstehung des Posidonienschiefers (Liasε).- Naturwiss.,12, 635–636.Google Scholar
  71. Poulton, T. P.,Leskiw, K. &Audretsch, A. (1982): Stratigraphy and microfossils of the Jurassic Bug Creek Group of Northern Richardson Mountains, Northern Yukon and adjacent Northwest Territories. - Bull. geol. Surv. Canada325, 137 pp.Google Scholar
  72. Pratt, L. M. &Threlkeld, C. N. (1984): Stratigraphic significance of 13C/12C ratios in mid-Cretaceous rocks of the Western Interior, USA. In:Stott, D. F. &Glass, D. J. (Eds.)- The Mesozoic of middle North America. - Mem. Can. Petrol. Geol.,9, 305– 312.Google Scholar
  73. Raiswell, R. (1976): The microbiological formation of carbonate concretions in the Upper Lias of NE England. - Chem. Geol.,18, 227–244.Google Scholar
  74. Riegraf, W. (1982): The bituminous Lower Toarcian at the Truc de Balduc near Mende (Department de la Lozère, S-France). In:Einsele, G. &Seilacher, A. (Eds). Cyclic and Event Stratification, Springer-Verlag, Berlin, 506–511.Google Scholar
  75. — (1984): Neue Ostracoden-Arten aus dem Oberen Pliensbachium und Unteren Toarcium Sü dwest-deutschlands und Südfrankreichs. - Stuttgarter Beitr. Naturk., Ser. B (Geol. und Paläont.),104, 1–19.Google Scholar
  76. —,Werner, G. &Lörcher, F. (1984): Der Posidonienschiefer: Biostratigraphie, Fauna und Fazies des südwestdeutschen Untertoarciums (Liasε). F. Enke Verlag, Stuttgart, 195 pp.Google Scholar
  77. Robaszynski, F. (1971): Les foraminifères pélagiques des »Dieves« crétacées aux abords du golfe de Mons. - Ann. Soc. géol. Nord.,91, 31–38.Google Scholar
  78. Schlanger, S. O.,Arthur, M. A.,Jenkyns, H. C. &Scholle, P. A. (1985): The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marineσ13C excursion. In:Brooks, J. &Fleet, A. J. (Eds.). Marine Petroleum Source Rocks, Spec. Publ. geol. Soc. Lond., in press.Google Scholar
  79. — &Jenkyns, H. C. (1976): Cretaceous oceanic anoxic events: causes and consequences.- Geol. Mijnbouw,55, 179–84.Google Scholar
  80. Schmid, F. &Spaeth, C. (1980): Erste Nachweis von Schwarzschiefern im Unter-Turon Helgolands (Nordsee, N.W.-Deutschland). - Neues Jb. Geol. Paläont., Mh, 1980, 703–706.Google Scholar
  81. Scholle, P. A. (1974): Diagenesis of Upper Cretaceous chalks from England, Northern Ireland and the North Sea. In:Hsü, K. J. &Jenkyns, H. C. (Eds.). Pelagic Sediments: on Land and under the Sea. - Spec. Publ. int. Ass. Sediment., 1, 177–210.Google Scholar
  82. — &Arthur, M. A. (1980): Carbon isotopic fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. - Bull. Am. Ass. Petrol. Geol.,64, 67–87.Google Scholar
  83. Seilacher, A. (1982): Ammonite shells as habitats in the Posidonia shales of Holzmaden — floats or benthic islands? - Neues Jb. Geol. Paläontol., Mh,1982, 98–114.Google Scholar
  84. Sellwood, B. W. &Jenkyns, H. C. (1975): Basins and swells and the evolution of an epeiric sea (Pliensbachian-Bajocian of Great Britain). - J. geol. Soc. Lond.,131, 373–388.Google Scholar
  85. Simoneit, B. R. T. &Stuermer, D. H. G. (1982): Organic geochemical indicators for sources of organic matter and paleoenvironmental conditions in Cretaceous Oceans. In:Schlanger, S. O. &Cita, M. B. (Eds.). - Nature and Origin of Cretaceous carbon-rich Facies, Academic Press, London, 145–163.Google Scholar
  86. Sorbini, L. (1976): L'ittiofauna cretacea di Cinto Euganeo (Padova, nord Italia). - Bull. Mus. Civ. Stor. nat. Verona,3, 479–567.Google Scholar
  87. Stenestad, E. (1972): Traek af det danske bassins udvikling in Ovre Kridt. - Dansk geol. Foren., Årsskrift for 1971, 63–69.Google Scholar
  88. Tanabe, K. (1983): Mode of life of an inoceramid bivalve from the Lower Jurassic of Japan. - Neues Jb. Geol. Palä ontol. Monatshefte,1983, 419–428.Google Scholar
  89. Tintori, A. (1977): Toarcian fishes from the Lombardian Basin. - Boll. Soc. paleont. ital.,16, 143–152.Google Scholar
  90. Tissot, B. P. &Welte, D. H. (1984): Petroleum Formation and Occurrence, 2nd edn., Springer-Verlag, Berlin, 699 pp.Google Scholar
  91. Voigt, E. (1962): Frühdiagenetische Deformation der turonen Plänerkalke bei Halle/Westf. als Folge einer Großgleitung unter besonderer Berücksichtigung des Phacoids-Problems. - Mitt. Geol. Staatsinst. Hamburg,31, 146–275.Google Scholar
  92. — (1977): Neue Daten über die submarine Großgleitung turoner Gesteine im Teutoburger Wald bei Halle/Westf. -Zeitsch. dt. geol. Ges.,128, 57–79.Google Scholar
  93. Walzebuck, J. P. (1982): Bedding types of the Toarcian black shales in N. W. Greece. In:Einselle, G. &Seilacher, A. (Eds.). - Cyclic and Event Stratification, Springer-Verlag, Berlin, 512–525.Google Scholar
  94. Watts, N. L., Lapré, J. F., Schijndel-Goester, F. S. Van &Ford, A. (1980): Upper Cretaceous and Lower Tertiary chalks of Albuskjell area, North Sea: deposition in a slope and base-of-slope environment. - Geology,8, 217–221.Google Scholar
  95. Wiedenmayer, F. (1980): Die Ammoniten der mediterranen Provinz im Pliensbachian und unteren Toarcian aufgrund neuer Untersuchungen im Generoso-Becken (Lombardische Alpen). - Denkschr. Schweiz. naturf. Ges.,93, 261 pp.Google Scholar
  96. Wille, W. (1982): Evolution and ecology of Upper Liassic dinoflagellates from S.W. Germany. - Neues Jb. Geol. Palä ont., Abh.,164, 74–82.Google Scholar
  97. — &Gocht, H. (1979): Dinoflagellaten aus dem Lias Südwestdeutschlands. - Neues Jb. Geol. Paläont., Abh.,158, 221–258.Google Scholar
  98. Winterer, E. L. &Bosellini, A. (1981): Subsidence and Sedimentation on Jurassic passive continental margin.- Bull. Am. Ass. Petrol. Geol.,65, 394–421.Google Scholar
  99. Wonders, A. (1980): Middle and Late Cretaceous planktonic foraminifera of the western Mediterranean area. - Utrecht Micropalaeont. Bull,24, 158 pp.Google Scholar
  100. Wong, W. W. &Sackett, W. M. (1978): Fractionation of stable carbon isotopes by marine phytoplankton.- Geochim. Cosmochim. Acta,42, 1809–15.Google Scholar
  101. Woodroof, P. B. (1981): Faunal and stratigraphic studies in the Turonian of the Anglo-Paris Basin. -Unpublished D. Phil. thesis, Oxford University, 2 vols., 354 pp. & 135 pp.Google Scholar

Copyright information

© Ferdinand Enke Verlag Stuttgart 1985

Authors and Affiliations

  • H. C. Jenkyns
    • 1
  1. 1.Department of Earth SciencesUniversity of OxfordOxfordUK

Personalised recommendations