Advertisement

Geologische Rundschau

, Volume 63, Issue 2, pp 430–450 | Cite as

Rifts, evaporites and the origin of certain alkaline rocks

  • Stephen Ayrton
Aufsätze

Abstract

The assimilation of evaporites and brines by basaltic magma in continental rifts may be responsible for alkaline magmatism and metasomatism. Spilites may be the oceanic counterpart of alkaline syenites. Remobilisation of alkaline material from evaporites and brines may also lead to feldspathisation and, moreover, it may be an essential factor in the production of glaucophane-bearing rocks. It is particularly significant that the oldest known occurrences of evaporites, nepheline syenites, and glaucophane “schists” are all of late Precambrian (-Eocambrian) age. These rocks appear to have become increasingly abundant with decreasing age, and this may reflect an evolution in the alkali (especially sodium) content of sea water, which in turn may correspond to progressive alkalinisation of the Earth's crust.

Keywords

Sodium Assimilation Evaporite Nepheline Essential Factor 

Zusammenfassung

Die Assimilation von Evaporiten und Solen durch basaltisches Magma in Zonen von kontinentalen Rifts dürfte für alkalischen Magmatismus und Metasomatismus verantwortlich sein. Die Spilite könnten das ozeanische Äquivalent der Alkalisyenite darstellen. Die Remobilisierung von alkalischem Material, ausgehend von Evaporiten und Solen, wäre auch für die Feldspatisation (z. B. die alpine Albitisierung) verantwortlich. Außerdem könnte dieser Vorgang eine wichtige Rolle bei der Bildung von Glaukophangesteinen spielen. Es ist von besonderer Bedeutung, daß die ältesten heute bekannten Lagerstätten von Evaporiten, Nephelinsyeniten und Glaukophanschiefern dem oberen Präkambrium (bzw. dem Eokambrium) angehören. Diese Gesteine scheinen mit abnehmendem Alter in ihrer Häufigkeit zuzunehmen. Dies könnte eine Evolution im Alkaligehalt des Meerwassers widerspiegeln, eine Erscheinung, welche ihrerseits einer zunehmenden Alkalisierung der Erdkruste entsprechen könnte.

Résumé

L'assimilation d'évaporites et de saumures par le magma basaltique montant dans des zones à rifts continentaux conduirait à des phénomènes de magmatisme et métasomatisme alcalins. Les spilites représenteraient le pendant océanique des syénites alcalines. La remobilisation de matériel alcalin à partir d'évaporites et de saumures serait également responsable de la feldspathisation (l'albitisation alpine, par exemple). De plus, elle pourrait jouer un rôle important dans la production de roches à glaucophane. Il est particulièrement significatif que les gisements les plus anciens, connus à ce jour, d'évaporites, de syénites néphéliniques, et de « schistes » à glaucophane, datent tous du Précambrien supérieur (ou de l'Eocambrien). Ces roches semblent augmenter de fréquence avec la diminution d'âge, ce qui pourrait refléter une évolution dans la teneur en alcalis (sodium surtout) de l'eau de mer, correspondant, à son tour, à l'alcalinisation croissante de la croûte terrestre.

Краткое содержание

Ассимиляция эвапори тов и соляных раствор ов базальтовой магмой в зонах континентальных риф тов может быть ответс твенна за появление щелочного магматизма и метасом атизма. Спилиты могут представлять собой о кеаническиc эквиваленты щелочны х сиенитов. Повторная мобилизация щелочного материала, идущего от эвапорито в и соляных растворов, может быть также ответственна и за появление полево го шпата (напр.: альпийс кая альбитизация). Кроме того, этот процесс мог играть важную роль пр и образовании глаукоф ановых пород. Особенно интер есно то, что самые древ ние известные на сегодня залежи овапоритов, нефелин-с иенитов и глаукофано вых сланцев принадлежат к верхне му докембрию, или оокемб рию. Количество этих п ород увеличивается с умен ьшением возраста. Такое взаим оотношение может отр ажать эволюцию содержания щелочей в морской вод е — явление, которое, в свою очередь, может соотве тствовать увеличивающейся щел очности земной коры.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Ayrton, S., &Masson, H.: Les minéralisations en crocidolite de la côte SW du Groenland - Un exemple de métasomatose sodique. - Bull. suisse Min. Pétr.,52, 2, 277–316, 1972.Google Scholar
  2. Bailey, D. K.: Isotopic composition of strontium in carbonatites. - Nature,201, 599, 1964.CrossRefGoogle Scholar
  3. Barker, D. S., &Long, L. E.: Feldspathoidal syenite in a quartz diabase. - Jour. Petrol.,10, 2, 202–221, 1969.CrossRefGoogle Scholar
  4. Barnes, H. L.: Geochemistry of Hydrothermal Ore Deposits. - 670 p. (Holt, Rinehart and Winston Inc.) 1967.Google Scholar
  5. Barth, T. F. W.: Theoretical Petrology. - 387 p., New York (John Wiley & Sons) 1952.Google Scholar
  6. —: Ideas on the interrclation between igneous and sedimentary rocks. - Bull. Comm. géol. Finlande,196, 321–326, 1961.Google Scholar
  7. Bearth, P., &Stern, W.: Zum Chemismus der Eklogite und Glaukophanite von Zermatt. - Bull. suisse Min. Pétr.,51, 2, 349–359, 1971.Google Scholar
  8. Cameron, E. M., &Baumann, A.: Carbonate sedimentation during the Archean. - Chem. Geol.,10, 1, 17–30, 1972.CrossRefGoogle Scholar
  9. Chase, C. G., &Perry, E. C. jr.: The Oceans: Growth and Oxygen Isotope Evolution. - Science,177, 4053, 992–994, 1972.CrossRefGoogle Scholar
  10. Currie, K. L.: An hypothesis on the origin of alkaline rocks suggested by the tectonic setting of the Monteregian Hills.- Canad. Mineral.,10, 3, 411–420, 1970.Google Scholar
  11. Daly, R. A.: Origin of the alkaline rocks. - Bull. Geol. Soc. Am.,XXI, 87–118, 1910.CrossRefGoogle Scholar
  12. —: Genesis of the alkaline rocks. - Jour. Geol.,XXVI, 2, 97–134, 1918.CrossRefGoogle Scholar
  13. Deans, T., Garson, M. S., &Coats, J. S.: Fenite-type soda metasomatism in the Great Glen, Scotland.- Nature Physical Science,234, 51, 145–147, 1971.CrossRefGoogle Scholar
  14. Degens, E. T., &Ross, D. A. (Ed.): Hot brines and recent metal deposits in the Red Sea. - 600 p., New York (Springer Verlag) 1969.Google Scholar
  15. Dickinson, W. R.: Evidence for plate-tectonic regimes in the rock record. - Am. Jour. Sci.,272, 551–576, 1972.CrossRefGoogle Scholar
  16. Doe, B. R., Hedge, C. E., &White, D. E.: Preliminary investigation of the source of lead and strontium in deep geothermal brines underlying the Salton Sea geothermal area. - Econ. Geol.,61, 462–483, 1966.CrossRefGoogle Scholar
  17. Downie, C., &Wilkinson, P.: The explosion craters of Basotu, Tanganyika Territory. - Bull. volcanol.,24, 389–420, 1962.CrossRefGoogle Scholar
  18. El Shazly, E. M., &Saleeb, G. S.: Scapolite - cancrinite mineral association in St. John's Island, Egypt. - 24th Inter. Geol. Congr., Section 14, 192–199, 1972.Google Scholar
  19. Eremenko, N. A., &Pankina, R. G.: The Evolution of Ocean Salt Composition on the Basis of the S32/S34 Ratio in Sulphate Sulphur. - 24th Inter. Geol. Congr., Section 10, 291–295, 1972.Google Scholar
  20. Ernst, W. G.: Do mineral parageneses reflect unusually high-pressure conditions of Franciscan metamorphism? - Am. Jour. Sci.,270, 81–108, 1971.CrossRefGoogle Scholar
  21. —: Occurrence and mineralogic evolution of blueschist belts with time. - Am. Jour. Sci.,272, 657–668, 1972.CrossRefGoogle Scholar
  22. Eugster, H. P.: Inorganic Bedded Cherts from the Magadi Area, Kenya. - Contr. Mineral. and Petrol.,22, 1–31, 1969.CrossRefGoogle Scholar
  23. Ferguson, J.: Geology of the Ilímaussaq Alkaline Intrusion, South Greenland. Description of map and structure. - Medd. om Grønland,172, 4, 82 p., 1964.Google Scholar
  24. Figueiredo Gomes, C.,de S., &Galvão, C. A.Faria: Hypersaline Thermal Springs in the Cuanza Sul District (Angola). - 24th Inter. Geol. Congr., Section 10, 245–253, 1972.Google Scholar
  25. von Gaertner, H. R.: Über die Alkali-Quelle der Granitisierung. - Dtsch. Geol. Ges. Zs.,103, 7–8, 1951.Google Scholar
  26. Girdler, R. W. (Ed.): East African Rifts. - Tectonophysics,15, 1/2, 179 p., 1972.Google Scholar
  27. Gresens, R. L.: Blueschist alteration during serpentinisation. - Contr. Mineral. and Petrol.,24, 93–113, 1969.CrossRefGoogle Scholar
  28. —: Do mineral parageneses reflect unusually high-pressure conditions of Franciscan metamorphism? Discussion.- Am. Jour. Sci.,271, 3, 311–316, 1971.CrossRefGoogle Scholar
  29. Hart, P. J. (Ed.): The Earth's Crust and Upper Mantle. - Am. Geophys. Union, Washington D. C., Mon. 13, 735 p., 1969.Google Scholar
  30. Heinrich, E. W.: The Geology of Carbonatites. - 555 p., Chicago (Rand McNally and Co.) 1966.Google Scholar
  31. Holland, H. D.: The geologic history of seawater — an attempt to solve the problem. - Geochim. and Cosmochim. Acta,36, 6, 637–651, 1972.CrossRefGoogle Scholar
  32. Jones, C. L., &Madsen, B. M.: Observations on igneous intrusions in late Permian evaporites, Southeastern New Mexico. Abstract. - Bull. Geol. Soc. Am.,70, 1625–1626, 1959.Google Scholar
  33. Kennedy, G. C.: Some aspects of the rôle of water in rock melts. - Geol. Soc. Am. Spec. Paper,62, 489–504, 1955.Google Scholar
  34. Kopecký, L.: Relationship between fenitization, alkaline magmatism, sulphide-barite-fluorite mineralization and deep fault tectonics in the Bohemian massif and in the Rhinegraben. - 24th Inter. Geol. Congr., Section 14, 41–50, 1972.Google Scholar
  35. KorzhinskiJ, D. S.: In Géol. et Pétrogr. du Précambrien. - Akad. Nauk. S.S.S.R., sibirsk. Otdelen, Trudy vost. - Sibirsk geol. Inst., Ser. géol., 5, 50–61, 1962.Google Scholar
  36. MacIntyre, F.: Why the sea is salt. - Scientific American, 104–115, Nov. 1970.Google Scholar
  37. Mahon, W. A. J., &Finlayson, J. B.: The Chemistry of the Broadlands Geothermal Area, New Zealand. - Am. Jour. Sci.,272, 48–68, 1972.CrossRefGoogle Scholar
  38. Mason, B.: Principles of Geochemistry. - 310 p., New York (John Wiley and Sons, Inc.) 1958.Google Scholar
  39. Milton, C., Chao, E. C. T., Fahey, J. J., &Mrose, M. E.: Mineralogy of the Green River formation of Wyoming, Utah and Colorado. - 21st Inter. Geol. Congr., Norden,21, 171–184, 1960.Google Scholar
  40. Muffler, L. J. P., &White, D. E.: Origin of CO2 in the Salton Sea Geothermal System, Southeastern California, U.S.A. - 23rd Inter. Geol. Congr.,17, 185–194, 1968.Google Scholar
  41. —: Active metamorphism of Upper Cenozoic sediments in the Salton Sea Geothermal field and the Salton Trough, Southeastern California. - Bull. Geol. Soc. Am.,80, 157–182, 1969.CrossRefGoogle Scholar
  42. Nalivkin, D. V.: The Geology of the U.S.S.R. - Inter. Ser. of Monographs on Earth Sciences,8, 170 p., Oxford (Pergamon Press) 1960.Google Scholar
  43. Nikishov, K. N.,Kovalisky, V. V., &Marshintsev, V. K.: Alkaline-ultrabasic rocks (alnoites, kimberlite and carbonatite) of the northeast Siberian platform. - 24th Inter. Geol. Congr., Section 14, 51–55, 1972.Google Scholar
  44. Nieuwenkamp, W.: Geochemistry of sodium. - 18th Inter. Geol. Congr.,II, 96–100, 1948.Google Scholar
  45. —: De oorsprong der materie bij endogene gesteentevorming. - Geol. en Mijn.,11, 10, 289–300, 1949.Google Scholar
  46. Pavlov, D. I., &Ryabchikov, I. D.: Dolerites solidified in a salt formation. - Inter. Geol. Rev.,10, 9, 1018–1027, 1968.CrossRefGoogle Scholar
  47. Philpotts, A. R.: Mechanism of emplacement of the Monteregian intrusions. - Canad. Mineral.,10, 3, 395–410, 1970.Google Scholar
  48. Pusztaszeri, L.: Étude pétrographique du massif du Chenaillet (Hautes-Alpes, France). - Bull. suisse Min. Pétr.,49, 3, 425–466, 1969.Google Scholar
  49. Raguin, E.: Pétrographie des roches plutoniques dans leur cadre géologique. - 239 p., Paris (Masson et Cie.) 1970.Google Scholar
  50. Ritsema, A. R. (Ed.): The Upper Mantle. - Tectonophysics,13, 1–4, 1972.Google Scholar
  51. Revelle, R.: On the history of the oceans. - Jour. Marine Res.,14, 446–461, 1955.Google Scholar
  52. Rittmann, A.: Les Volcans et leur Activité. - 462 p., Paris (Masson et Cie.) 1963.Google Scholar
  53. Roedder, E.: Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts. - Am. Mineral.,50, 1746–1782, 1965.Google Scholar
  54. -: Composition of fluid inclusions. - Geol. Survey Prof. Paper 440. Data of Geochemistry. Chapter JJ, 164 p., 1972.Google Scholar
  55. de Roever, W. P.: Glaucophane problems. - Tscherm. Min. Pet. Mitt.,18, 1, 64–75, 1972.CrossRefGoogle Scholar
  56. Rubey, W. W.: Geologic History of Sea Water. - Bull Geol Soc. Am.,62, 1111–1148, 1951.CrossRefGoogle Scholar
  57. Sagan, C., &Mullen, G.: Earth and Mars: Evolution of Atmospheres and Surface Temperatures. - Science,177, no. 4043, 52–56, 1972.CrossRefGoogle Scholar
  58. Schneiderhöhn, H.: Neue Beobachtungen und Hypothesen im Kaiserstuhl. - Mitt. bad. Geol Landesanst., 30–36, 1948.Google Scholar
  59. Semenenko, N. P.: La théorie du métamorphisme des zones mobiles. - Sl. XXI Sessii Mezhdunas geol. Kongressa “ Granito-gneisy”, 1960.Google Scholar
  60. Shand, S. J.: Eruptive Rocks. - 444 p., London (Thomas Murby and Co.) 1943.Google Scholar
  61. Skinner, B. J., White, D. E., Rose, H. J., &Mays, R. E.: Sulfides associated with the Salton Sea geothermal brine. - Econ. Geol,62, 316–330, 1967.CrossRefGoogle Scholar
  62. Sørensen, H.: The Ilímaussaq Batholith. A review and discussion. - Medd. om Grønland,162, 3, 48 p., 1958.Google Scholar
  63. -: On the agpaitic rocks. - 21st Inter. Geol Congr., Norden. Part XIII, 319–327, 1960.Google Scholar
  64. —: Internal structures and geological setting of the three agpaitic intrusions - Khibina and Lovozero of the Kola Peninsula and Ilimaussaq, South Greenland. - Canad. Mineral.,10, 3, 299–334, 1970.Google Scholar
  65. Streckeisen, A.: On the structure and origin of the nepheline-syenite complex of Ditro (Transylvania, Roumania). - 21st Inter. Geol. Congr., Norden. Part XIII, 228–238, 1960.Google Scholar
  66. Subba Rao, S.: Alkaline Rocks of the Deccan Traps. - Bull. volcanolog.,XXXV, 4. Spec. Issue. Proceedings of the Inter. Symposium on “ Deccan Trap and Other Flood Eruptions”. Sagar, M. P., India, Jan. 1969. Part 2, 998–1011, 1972.CrossRefGoogle Scholar
  67. Tazieff, H.: New Investigations on Eruptive Gases. - Bull. volcanol,XXXIV, 421–438, 1971.Google Scholar
  68. Termier, H., &Termier, G.: L'Evolution de la Lithosphère. I. Pétrogénèsc. - 653 p. Paris (Masson et Cie.) 1956.Google Scholar
  69. Tilley, C. E.: Problems of alkali rock genesis. - Quart. Jour. Geol. Soc. London,113, 323–360, 1958.CrossRefGoogle Scholar
  70. Thendall, A. F.: Three great basins of Precambrian banded iron formation deposition: a systematic comparison. - Bull. Geol. Soc. Am.,73, 1527–1544, 1968.CrossRefGoogle Scholar
  71. Turner, F. J., &Verhoogen, J.: Igneous and Metamorphic Petrology. - 694 p., New-York (McGraw-Hill Inc.) 1960.Google Scholar
  72. Tuttle, O. F., &Gittins, J. (Ed.): Carbonatites. - 591 p., New York (Interscience Publishers, John Wiley and Sons Inc.) 1966.Google Scholar
  73. Vinogradov, V. I.: The isotopic composition of sulphur as a factor indicating constancy of its cyclic circulation in time.- Chem. Geol.,10, 99–106, 1972.CrossRefGoogle Scholar
  74. Vorobieva, O. A.,Yashina, R. M.,Sveshnikova, E. V.,Kononova, V. A., &Andreyeva, E. D.: The conditions of alkaline rock formation (based on materials obtained in the USSR). - 24th Inter. Geol. Congr., Section 14, 76–81, 1972.Google Scholar
  75. Wardlaw, N. C., &Nicholls, G. D.: Cretaceous Evaporites of Brazil and West Africa and their Bearing on the Theory of Continent Separation.- 24th Inter. Geol. Congr., Section 6, 43–55, 1972.Google Scholar
  76. Wegmann, C. E.: Geological Investigations in Southern Greenland. Part I: On the Structural Divisions of Southern Greenland.- Medd. om Grønland,113, 2, 148 p., 1938.Google Scholar
  77. White, D. E.: Thermal waters of volcanic origin. - Bull. Geol. Soc. Am.,68, 1637–1658, 1957.CrossRefGoogle Scholar
  78. —: Environments of Generation of Some Base-Metal Ore Deposits. - Econ. Geol.,63, 4, 301–335, 1968.CrossRefGoogle Scholar
  79. Williams, C. E.: The origin of carbonatites and related alkaline rocks. - Geol. Surv. Uganda Rec. 1955–1956, 9–31, 1959.Google Scholar
  80. Wimmenauer, W.: The alkaline province of Central Europe. Abstract. - 24th Inter. Geol. Congr., Section 14, 82, 1972.Google Scholar
  81. Wyart, J., &Sabatier, G.: Transformation des sédiments pélitiques à 800° C sous une pression d'eau de 1800 bars et granitisation. - Bull. Soc. franç. Minér. Crist.,82, 201–210, 1959.Google Scholar
  82. Wyllie, P. J., &Watkinson, D. H.: Phase equilibrium studies bearing on genetic links between alkaline and subalkaline magmas, with special reference to the limestone assimilation hypothesis. - Canad. Mineral.,10, 3, 362–374, 1970.Google Scholar
  83. Wyllie, P. J., &Tuttle, O. F.: Melting in the Earth's Crust. - 21st Inter. Geol. Congr., PartXVIII, 227–235, 1960.Google Scholar

Copyright information

© Ferdinand Enke Verlag Stuttgart 1974

Authors and Affiliations

  • Stephen Ayrton
    • 1
  1. 1.Institut de Minéralogie-PétrographieUniversité de LausanneLausanneSwitzerland

Personalised recommendations