Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rado's inequality

This is a preview of subscription content, log in to check access.

Bibliography

  1. [1]

    Beckenbach, E. F. andBellman, R.,Inequalities (Springer Verlag, Berlin — Göttingen — Heidelberg 1961 [Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Bd. 30]).

  2. [2]

    Bullen, P. S. andMarcus, M.,Symmetric Means and Matrix Inequalities, Proc. Amer. Math. Soc.12, 285–290 (1961).

  3. [3]

    Bullen, P. S.,Some Inequalities for Symmetric Means, Pacific J. Math.15, 47–54 (1965).

  4. [4]

    Bullen, P. S.,Some More Inequalities Involving the Arithmetic and Geometric Means, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.1967, No. 181–196, 61–66.

  5. [5]

    Bullen, P. S.,On Some Inequalities of Mitrinović and Vasić, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.1968, No. 210–228, 49–54.

  6. [6]

    Bullen, P. S.,On Some Theorems of Popoviciu, Bul. Inst. Politechn. Iaşi15 (19), 45–38 (1969).

  7. [7]

    Bullen, P. S.,An Inequality due to Henrici, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.1969, No. 247–273, 21–26.

  8. [8]

    Diananda, P. H.,On Some Inequalities of H. Kober, Proc. Cambridge Philos. Soc.59, 341–346 (1963).

  9. [9]

    Everitt, W. N.,On an Inequality for the Generalized Arithmetic and Geometric Means, Amer. Math. Monthly70, 251–255 (1963).

  10. [10]

    Hardy, G. H., Littlewood, J. E., andPólya, G.,Inequalities (Cambridge Univ. Press, Cambridge 1934).

  11. [11]

    Kober, H.,On the Arithmetic and Geometric Means and on Hölder's Inequality, Proc. Amer. Math. Soc.9, 452–459 (1958).

  12. [12]

    McLaughlin, H. W. andMetcalf, F. T.,An Inequality for Generalized Means, Pacific J. Math.22, 303–311 (1967).

  13. [13]

    Mitrinović, D. S. etVasić, P. M.,Nouvelles inégalités pour les moyennes d'ordre arbitraire, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz.1966, No. 159–170, 1–8.

  14. [14]

    Mitrinović, D. S. etVasić, P. M.,Une classe d'inégalités où interviennent les moyennes d'ordre arbitraire, Univ. Begrad. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.1966, No. 159–170, 9–14.

  15. [15]

    Mitrinović, D. S. etVasić, P. M.,Généralisation d'un procédé fournissant des inégalités du Radó, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.1968, No. 210–228, 27–30.

  16. [16]

    Mitrinović, D. S. etVasić, P. M.,Généralisation d'une inégalité de Henrici, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.1968, No. 210–228, 35–38.

  17. [17]

    Mitrinović, D. S. etVasić, P. M.,Une inégalité général relative aux moyennes d'ordre arbitraire, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.1968, No. 210–228, 81–85.

  18. [18]

    Popoviciu, T.,Asupa una inegalităţi între medii, Acad. R.P. Romîne Fil. Cluj. Stud. Cerc. Mat.11, 343–355 (1960).

Download references

Author information

Additional information

Certain results in this paper have been given in more detail in the author's paper,The Inequalities of Rado and Popoviciu, Univ. Beograd. Publ. Elektrotekh. Fak. Ser. Mat. Fir., No. 330–337, 23–33 (1970).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bullen, P.S. Rado's inequality. Aequat. Math. 6, 149–156 (1971). https://doi.org/10.1007/BF01819746

Download citation

Keywords

  • Convex Function
  • Monotonic Function
  • Finite Subset
  • Algebraic Manipulation
  • Interesting Variation