Aequationes mathematicae

, Volume 17, Issue 1, pp 255–291 | Cite as

Tensorial Euler-Lagrange expressions and conservation laws

  • Ian M. Anderson
Research papers

AMS (1970) subject classification

Primary 49H05 Secondary 83C05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson, I. M.,Mathematical aspects of the neutrino energy-momentum tensor in the general theory of relativity. M. Math. thesis (unpublished), Univ. of Waterloo, 1974.Google Scholar
  2. [2]
    Anderson, I. M. andLovelock, D.,A characterization of the Einstein tensor in terms of spinors. J. Math. Phys.17 (1976), 1001–1003.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    du Plessis, J. C.,Tensorial concomitants and conservation laws. Tensor, N.S.20 (1969), 347–360.MathSciNetzbMATHGoogle Scholar
  4. [4]
    du Plessis, J. C.,Spin two fields and general relativity. Tensor, N.S.26 (1972), 255–261.MathSciNetGoogle Scholar
  5. [5]
    Eddington, A. S.,The mathematical theory of relativity (Second Edition). Cambridge University Press, Cambridge, 1957.Google Scholar
  6. [6]
    Horndeski, G. W.,Differential operators associated with the Euler-Lagrange operator. Tensor, N. S.28 (1974), 303–318.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Horndeski, G. W.,Tensorial concomitants of relative tensors, affine connections and their derivatives of arbitrary order. Preprint, Univ. of Waterloo, 1974.Google Scholar
  8. [8]
    Lovelock, D.,Divergence-free tensorial concomitants. Aequationes Math.4 (1970), 127–138.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Lovelock, D.,The Einstein tensor and its generalizations. J. Math. Phys.12 (1971), 498–501.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Lovelock, D.,The Euler-Lagrange expression and degenerate Lagrange densities. J. Australian Math. Soc.14 (1972), 482–495.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Lovelock, D. andRund, H.,Tensors, differential forms and variational principles. Wiley-Interscience, New York, 1975.zbMATHGoogle Scholar
  12. [12]
    Noether, E.,Invariante variationsprobleme. Nachr. Ges. Wiss Göttingen, Math.-phys. Kl.1918 (1918), 235–257.Google Scholar
  13. [13]
    Pirani, F. A. E.,Lectures on general relativity. Brandeis Summer Institute in Theoretical Physics, Vol.1 (1965), 305–330.Google Scholar
  14. [14]
    Rund, H.,Variational problems in which the unknown functions are tensor components. Second Colloq. on the Calculus of Variations, University of South Africa, 1964, 129–174.Google Scholar
  15. [15]
    Rund, H.,The Hamilton-Jacobi theory in the calculus of variations. Krieger, New York, 1973.zbMATHGoogle Scholar
  16. [16]
    Wainwright, J.,Invariance properties of spinor Lagrangians I. Tensor, N.S.19 (1968), 217–232.MathSciNetGoogle Scholar
  17. [17]
    Weinberg, S.,Gravitation and cosmology: Principles and applications of the general theory of relativity. Wiley, New York, 1972.Google Scholar

Copyright information

© Birkhäuser Verlag 1978

Authors and Affiliations

  • Ian M. Anderson
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations