Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

# Discretization of semicoercive variational inequalities

## Summary

Consider the variational inequality:

$$Find \hat x \varepsilon K such that \beta (\hat x, x - \hat x) \geqslant \lambda (x - \hat x) for all x \varepsilon K$$

and its discretization:

$$Find x_h \varepsilon K_h such that \beta (x_h , x - x_h ) \geqslant \lambda (x - x_h ) for all x \varepsilon K_h .$$

Here, in a real reflexive separable Banach spaceX, β is a continuous bilinear form onX × X that is nonnegative on the diagonal,λ ∈ X * is a continuous linear form, and$$K \subseteq X, K_h \subseteq X_h$$ are closed convex nonvoid sets, where the family{X h } h >o of subspaces ofX describes a discretization scheme. Then under Glowinski's realistic assumptions on the approximation ofK by{K h } h > o—not requiring that$$K_h \subseteq K -$$ we prove norm convergence,$$\lim _{h \to 0} \left\| {x_h - \hat x} \right\| = 0$$, provided the solution$$\hat x$$ is unique andβ satisfies a Gårding inequality: There exist a compact operatorT 1 :X→X * and a positive constant α such thatβ(x, x)+〈T 1 x, x〉 ⩾ α∥x∥ 2 for allx ∈ X.

This is a preview of subscription content, log in to check access.

## References

1. [1]

Baiocchi, C., Gastaldi, F. andTomarelli, F.,Some existence results on noncoercive variational inequalities. Ann. Scuola Norm. Sup. Pisa CI. Sci. (4)13 (1986), 617–659.

2. [2]

Ciarlet, P. G.,The finite element method for elliptic problems. North-Holland, Amsterdam, 1978.

3. [3]

Costabel, M.,Starke Elliptizität von Randintegraloperatoren erster Art. Habilitationsschrift. THD-Reprint 868, Technische Hochschule Darmstadt, 1984.

4. [4]

Costabel, M. andWendland, W. L.,Strong ellipticity of boundary integral operators. J. Reine Angew. Math.372 (1986), 34–63.

5. [5]

Fenchel, W.,Über konvexe Funktionen mit vorgeschriebenen Niveaumannigfaltigkeiten. Math. Z.63 (1956), 496–506.

6. [6]

Fichera, G.,Boundary value problems of elasticity with unilateral constraints. In:Handbuch der Physik—Encyclopedia of Physics (S. Flügge; ed.) Band VI a/2 Festköpermechanik II. Springer, Berlin, 1972, pp. 391–424.

7. [7]

Friedman, A.,Partial differential equations. Holt, Rinehart and Winston, New York, 1969.

8. [8]

Glowinski, R.,Numerical methods for nonlinear variational problems. Springer, New York, 1984.

9. [9]

Gwinner, J.,Convergence and error analysis for variational inequalities and unilateral boundary value problems, Habilitationsschrift. THD-Preprint 1257, Technische Hochschule Darmstadt, 1989.

10. [10]

Gwinner, J.,Finite-element convergence for contact problems in plane linear elastostatics, to appear in Q. Appl. Math.

11. [11]

Hildebrandt, S. andWienholtz, E.,Constructive proofs of representativn theorems in separable Hilbert space. Comm. Pure Appl. Math.17 (1964), 369–373.

12. [12]

Kinderlehrer, D. andStampacchia, G.,An introduction to variational inequalities and their applications. Academic Press, New York, 1980.

13. [13]

Kohn, J. J. andNirenberg, L.,An algebra of pseudo-differential operators. Comm. Pure Appl. Math.18 (1965), 269–305.

14. [14]

Michlin, S. G.,Variationsmethoden der Mathematischen Physik. Akademie-Verlag, Berlin, 1962.

15. [15]

Minty, G. J.,Monotone (non linear) operators in Hilbert space. Duke Math. J.29 (1962), 341–346.

16. [16]

Stampacchia, G.,Variational inequalities. In:Theory and applications of monotone operators (A. Ghizetti; ed.). Edizione Oderisi, Gubbio, 1969, pp. 101–192.

## Rights and permissions

Reprints and Permissions

Gwinner, J. Discretization of semicoercive variational inequalities. Aeq. Math. 42, 72–79 (1991). https://doi.org/10.1007/BF01818479