, Volume 1, Issue 4, pp 225–231 | Cite as

Heterosis in hybrid larch (Larix decidua x leptolepis)

II. Growth characteristics
  • R. Matyssek
  • E. -D. Schulze
Original Articles


Among 33-year-old forest trees ofLarix decidua, L. leptolepis andL. decidua x leptolepis, the hybrid possessed an above-ground biomass which was three times greater, although all larches displayed similar relative distributions of biomass. At a “relative growth rate” slightly lower than in the parent species, hybrid larch achieved twice the annual carbon gain, increment in stem length and above-ground production, and its foliage-related stem growth was higher than in European (L. decidua) but similar to Japanese (L. leptolepis) larch. A similar “relative growth efficiency” and foliage-related total above-ground production in all trees did reflect the similarity of photosynthetic capacity of the hybrid found at the leaf level. While the lengths of lateral twigs on hybrid branches were intermediate between the European larch with short, and the Japanese larch with large, twigs the hybrid possessed the longest branches with the highest needle biomass. This resulted in a crown structure of the hybrid crown similar to the Japanese larch together with a high needle density on branches as in the European larch. In total, the foliage biomass per crown length was about 30% higher in hybrid larch than in both of the parent species. Thus, the high carbon input for the stem heterosis was based on a “complementation principle” of advantageous parent features at the crown level. Similar slopes of foliage against sapwood area of stem and branches did not indicate a special need for a thick hybrid stem with respect to water transport.

Key words

Larix Heterosis Growth Branching pattern Needle density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. El-Sharkawy M, Hesketh J, Muramota H (1968) Leaf photosynthetis rates and other growth characteristics among 26 species ofGossypium. Crop Sci 8: 670–674Google Scholar
  2. Gifford RM (1974) A comparison of potential photosynthesis, productivity and yield of plant species with differing photosynthetic metabolism. Aust J Plant Physiol 1: 107–117Google Scholar
  3. Gothe H, Schober R (1971) Ein Kreuzungsversuch mitLarix europea DC., Herkunft Schlitz, undLarix leptolepis. Gord Allg Forst Jagdztg 142: 211–217Google Scholar
  4. Grosser D (1977) Die Hölzer Mitteleuropas — Ein mikrophotographischer Lehratlas. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. Küppers M (1985) Carbon relations and competition between woody species in a central European hedgerow. IV. Growth form and partitioning. Oecologia 66: 343–352Google Scholar
  6. Lange OL, Beyschlag W, Tenhunen JD (1987B.) Control of leaf carbon assimilation — input of chemical energy into ecosystems. In: Schulze E-D, Zwölfer H (eds) Ecological studies, vol 61. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. Larcher W (1963) Die Leistungsfähigkeit der CO2 Assimilation höherer Pflanzen unter Laboratoriumsbedingungen am natürlichen Standort. Mitt Florist Soziol Arbeitsgem N. F. 10: 20–30Google Scholar
  8. Matyssek R (1985a) Der Kohlenstoff-, Wasser- und Nährstoffhaushalt der wechselgrünen und immergrünen Koniferen Lärche, Fichte, Kiefer. Doctoral Thesis, University of BayreuthGoogle Scholar
  9. Matyssek R (1985b) The carbon balance of three deciduous larch species and an evergreen spruce species near Bayreuth (W Germany). In: Turner H, Tranquillini W (eds) Establishment and tending of subalpine forests: research and management. Proc. 3rd IUFRO Workshop P 1.07-00, 1984. Eidg Anst Forstl Versuchswes Ber 270: 123–133Google Scholar
  10. Matyssek R (1986) Carbon, water and nitrogen relatiosn in evergreen and deciduous conifers. Tree Physiol 2: 177–187PubMedGoogle Scholar
  11. Matyssek R, Schulze E-D (1987) Heterosis in hybrid larch (Larix decidua x leptolepis). I. The role of leaf characteristics. Trees 1: 219–224Google Scholar
  12. Odin H (1972) Studies of the increment rhythm of Scots pine and Norway spruce plants. Stud For Suec 97: 1–33Google Scholar
  13. Oren R, Werk KS, Schulze E-D (1986) Relationship between foliage and conducting xylem inPicea abies (L.) Karst. Trees 1: 61–69Google Scholar
  14. Remphrey WR, Powell GR (1984) Crown architecture ofLarix lancina saplings: quantitative analysis and modelling of (nonsylleptic) order 1 branching relation to development of the main stem. Can J Bot 62: 1906–1915Google Scholar
  15. Sachs L (1978) Angewandte Statistik — Statistische Methoden und ihre Anwendung. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. Satoo T (1973) Primary production relations in an plantation ofLarix leptolepis in Hokkaido: materials for the study of growth in forest stands. 10. Bull Tokyo Univ For 66: 119–126Google Scholar
  17. Schober R (1953) Die japanische Lärche. Schriftenreihe der forstlichen Fakultät der Universität Göttingen, Band 7/8. Sauerländer, FrankfurtGoogle Scholar
  18. Schulze E-D (1982) Plant life forms and their carbon, water and nutrient relations. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology. New Series, vol 12B, Physiological plant ecology II. Springer, Berlin Heidelberg New York, pp 615–676Google Scholar
  19. Schulze E-D, Fuchs MI, Fuchs M (1977a) Spatial distribution of photosynthetic capacity and performance in a mountain spruce forest of northern Germany. I. Biomass distribution and daily CO2 uptake in different crown layers. Oecologia 29: 43–61Google Scholar
  20. Schulze E-D, Fuchs MI, Fuchs M (1977b) Spatial distribution of photosynthetic capacity and performance in a mountain spruce forest of northern Germany. III. The significance of the evergreen habit. Oecologia 30: 239–248Google Scholar
  21. Schulze E-D, Cermak J, Matyssek R, Penka M, Zimmermann R, Vasicek F, Gries W, Kucera J (1985) Canopy transpiration and water fluxes in the xylem of the trunk ofLarix andPicea trees — a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66: 475–483Google Scholar
  22. Schulze E-D, Küppers M, Matyssek R (1986) The roles of carbon balance and branching pattern in the growth of woody species. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, CambridgeGoogle Scholar
  23. Schweingruber FH (1978) Mikroskopische Holzanatomie. Bosshard W (ed) Kommissionsverlag Zürcher, ZugGoogle Scholar
  24. Sinha SK, Khanna R (1975) Physiological, biochemical and genetic basis of heterosis. Adv Agron 27: 123–174Google Scholar
  25. Von Droste zu Hülshoff B (1969) Struktur und Biomasse eines Fichtenbestandes auf Grund einer Dimensionsanalyse an oberirdischen Baumorganen. Inaugural dissertation, Ludwig-Maximilians-Universität, MunichGoogle Scholar
  26. Waring RH, Schlesinger WH (1985) Forest ecosystems: concepts and management. Academic Press, New YorkGoogle Scholar
  27. Waring RH, Schroeder PE, Oren R (1982) Application of the pipe model theory to predict canopy leaf area. Can J For Res 12: 556–560Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • R. Matyssek
    • 1
  • E. -D. Schulze
    • 1
  1. 1.Lehrstuhl Pflanzenökologie der Universität BayreuthBayreuthGermany

Personalised recommendations